Auto-SDA: Automated Video-based Social Distancing Analyzer

Mahshid Ghasemi, Zoran Kostic, Javad Ghaderi, Gil Zussman

Electrical Engineering, Columbia University

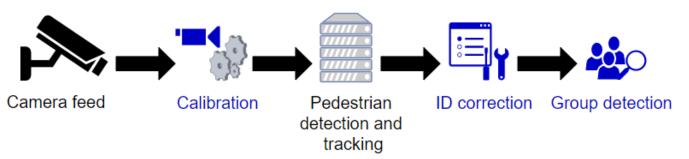
{mahshid.Ghasemi,zk2172,jghaderi,gil.zussman}@columbia.edu

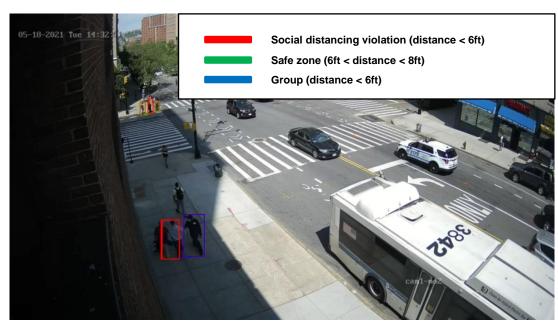
COVID-19 and Social Distancing


Social Distancing Analysis Using the COSMOS Testbed

Automated video-based **S**ocial **D**istancing **A**nalyzer (Auto-SDA)

- Measures compliance with social distancing policies.
- Evaluated using the COSMOS testbed deployed in West Harlem, NYC.
- Used a camera deployed on the 2nd floor of Columbia's Mudd building looking at the COSMOS site¹.


The NSF PAWR COSMOS site at 120th St. And Amsterdam Ave. intersection, NYC.



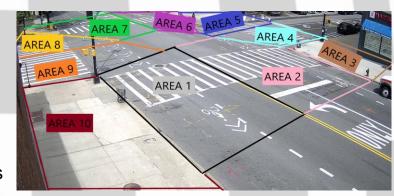
Viewpoint of the camera deployed on the 2nd floor of the Columbia's Mudd building.

Automated Social Distancing Analyzer (Auto-SDA)

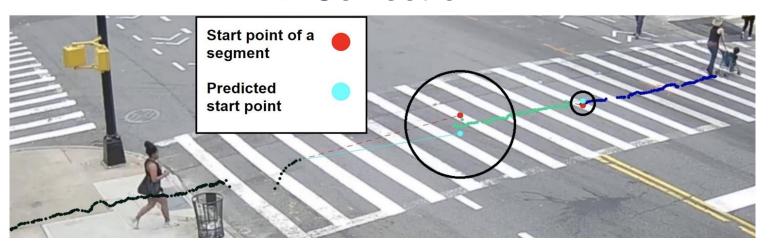
- Calibration: Converts 2D on-image distances to 3D on-ground distances.
- Object detection and tracking: Locates the pedestrians and assigns an ID to each of them.
- **ID correction:** Removes the redundant IDs generated by the tracker and extract the trajectory of each pedestrian.
- **Group detection:** Excludes the pedestrians affiliated with a single social group from social distancing violations.

Multi-area Camera Calibration: Intrinsic Parameters

- Camera calibration is required to convert 2D on-image distances to 3D on-ground distances.
- Camera calibration means calculating the intrinsic and extrinsic parameters of the camera.
- Intrinsic parameters can be obtained using a checkerboard.
- Intrinsic parameters does not depend on view point of the camera.
- More than 20 images of the checkerboard in different poses were provided to the OpenCV library to obtain the intrinsic parameters of the camera.



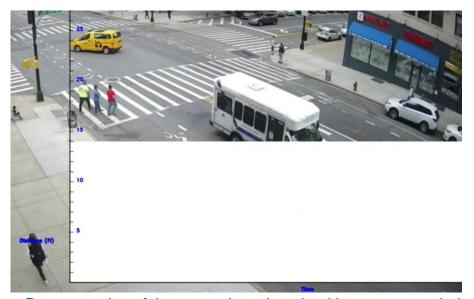
Calibration of the COSMOS cameras using a checkerboard:


Multi-area Camera Calibration: Extrinsic Parameters

- Standard camera calibration methods lead to inaccurate onground distance computation.
- Calibration module splits the view of the camera into multiple areas.
- The extrinsic parameters for each area are computed individually.
- Multi-area camera calibration can obtain on-ground distances with less than 10 cm error.

	Calculated Distance from Different Methods (cm)							
Pixel Coordinates of a Pair of Points on a 4K Frame	Ground-truth	Multi-area Calibration	Homography Transformation	Planar Camera Perspective Transformation				
[1093, 715], [1065, 685]	320	325	209	339				
[1785, 572], [1862, 566]	183	178	140	128				
[1680, 582], [1588, 552]	503	508	368	457				
[2153, 598], [2077, 582]	259	256	201	146				
[1121, 746], [1093, 714]	320	314	201	229				

ID Correction


- High altitude and oblique view of traffic cameras (including the COSMOS camera), and obstacles degrade the performance of the tracker.
- Compensates for the inaccuracies of the tracker.
- Removes the redundant IDs and extracts the entire trajectory of the pedestrians.
- Uses Linear Regression (LR) to find trajectory segments.

Algorithm 1 ID Correction

```
1: Input: ID_{vec}, e_1, e_2, n
                                                 ▶ ID<sub>vec</sub> is the output of NvDCF tracker
 2: Output: corrected ID<sub>vec</sub>
 3: for id \in ID_{\text{vec}} do
        Compute id.Trj
                                                           > vector of points on id's path
        Compute id.TimeStamp.StartTime
                                                                           detection time
        Compute id.TimeStamp.StopTime
                                                                                ▶ Lost time
        Compute (id.TailEst, id.TailDir) \rightarrow Linear Regression of id.Trj.tail(n)
        Compute (id.HeadEst, id.HeadDir)
                                                                   ▶ Linear Regression of
    id.Trj.head(n)
 9: for (id_1, id_2) \in ID_{\text{vec}} do
10:
        t1 \leftarrow id_1.TimeStamp.StopTime
11:
        t2 \leftarrow id_2.TimeStamp.StartTime
12:
        p_1 \leftarrow id_1.TailEst.at(t = t_2), p_2 \leftarrow id_1.Trj.at(t_2)
        v_1 \leftarrow id_1.TailDir, v_2 \leftarrow id_2.HeadDir
13:
        if t_2 - t_1 < e_1 \&\& |p_1 - p_2| < e_2 \&\& \angle(v1, v2) < 90^\circ then
14:
             id_1 and id_2 belongs to same person
15:
```

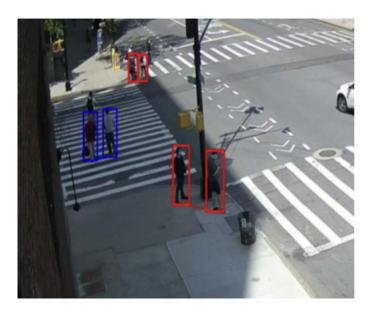
Group Detection

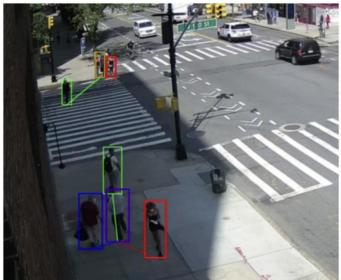
- Excludes social groups from social distancing violation.
- Off-the-shelf group detectors require detailed information such as body and head orientation, velocity, exact trajectory, etc.
- In realistic deployments, such as COSMOS cameras, **details cannot be obtained**.
- Detects the social groups with limited data from the cameras.

Demonstration of the group detection algorithm on a recorded video from the camera on the 2nd floor of Columbia Mudd building.

Algorithm 2 Group Detection

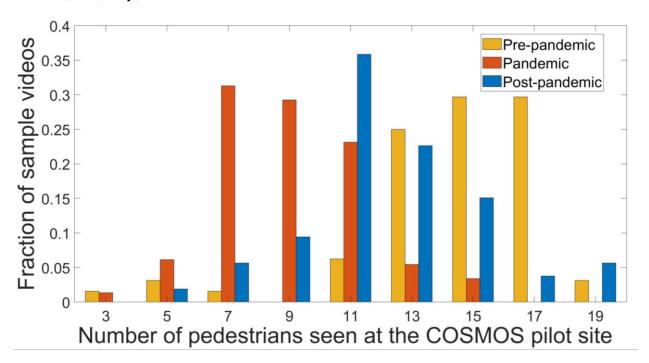
```
1: Input: ID_{\text{vec}}, d_{\text{max}}, d_{\text{max}}, \sigma_{\text{max}}
 2: Output: IDvec Pdestrians belong to a group
 3: for id \in ID_{vec} do
         id.TimeTrj = map(id.TimeStepVec, id.Trj)
 5: for (id_1, id_2) \in ID_{\text{vec}} do
         n = 0
 6:
         for t = 1 : T do
              pos_1 = id_1.TimeTrj(t), pos_2 = id_2.TimeTrj(t)
              d = ||pos_1 - pos_2||_2
              if d > d_{\text{max}} then
10:
11:
                   n + +, continue
12:
              Corr_{\text{vec}}(id_1, id_2).append(d)
13:
          if n > N_{\text{max}} then
14:
              continue
         \bar{d} = \text{mean}(Corr_{\text{vec}}(id_1, id_2)) \rightarrow \text{calculate the mean distance between two}
15:
     pedestrians
                                                           > calculate the standard deviation of
          \sigma = \operatorname{std}(Corr_{\operatorname{vec}}(id_1, id_2))
     instantaneous distances between two pedestrians
          if \bar{d} < \bar{d}_{max} && \sigma < \sigma_{max} then
17:
18:
              id_1 and id_2 belongs to the same group
```

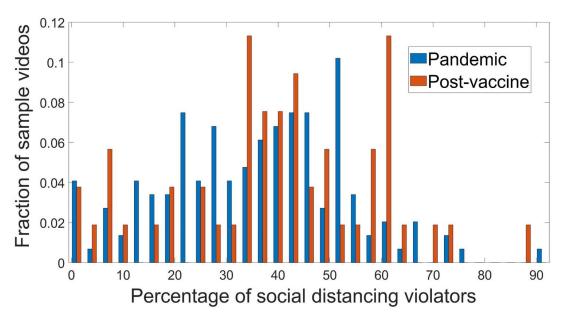

Comparison of Prior Work to Auto-SDA


Framework	Object Detection	Tracking	Calibration Method	On-Ground Distance Computation Error	Correction	Group Detection	Real-World COVID-19 Pandemic Impact Analysis
[1, 2]	✓	Х	Homography transformation	≫ 10 cm	Х	Х	Х
[3]	✓	✓	Pairwise L ₂ norm	≫ 10 cm	X	X	X
[4]	✓	✓	Planar camera persp. trans.	≫ 10 cm	х	х	Х
[4, 5, 6, 7]	✓	х	Planar camera persp. trans.	≫ 10 cm	Х	Х	Х
Auto-SDA	✓	✓	Multi-area calibration	< 10 cm	✓	✓	✓

- 1. Dongfang Yang, Ekim Yurtsever, Vishnu Renganathan, Keith A Redmill, and Ümit Özgüner. 2021. A vision-based social distancing and critical density detection system for COVID-19. Sensors (2021).
- 2. Sergio Saponara, Abdussalam Elhanashi, and Alessio Gagliardi. Implementing a real-time, Al-based, people detection and social distancing measuring system for Covid-19. JRIP (2021)
- 3. Narinder Singh Punn, Sanjay Kumar Sonbhadra, and Sonali Agarwal. Monitoring COVID-19 social distancing with person detection and tracking via fine-tuned YOLOv3 and DeepSort techniques. arXiv preprint arXiv:2005.01385 (2020).
- 4. Anupriya Koneru, P Ragini, M Sri Vastav, and K Jashnavi. A Real-Time Solution for Social Distance Detection in COVID-19 Pandemic. ICICCS (2021).
- 5. John Betancourt. Social Distancing Analyser. https://github.com/JohnBetaCode/Social-Distancing-Analyser (2020).
- 6. Deepak Birla. Social Distancing Al. https://github.com/deepak112/Social-Distancing-Al (2020).
- 7. Marco Cristani, Alessio Del Bue, Vittorio Murino, Francesco Setti, and Alessandro Vinciarelli. The visual social distancing problem. IEEE Access (2020).
- 8. Tom Farrand. Social Distancing. https://github.com/FarrandTom/social-distancing (2020).

Measurements and Evaluation

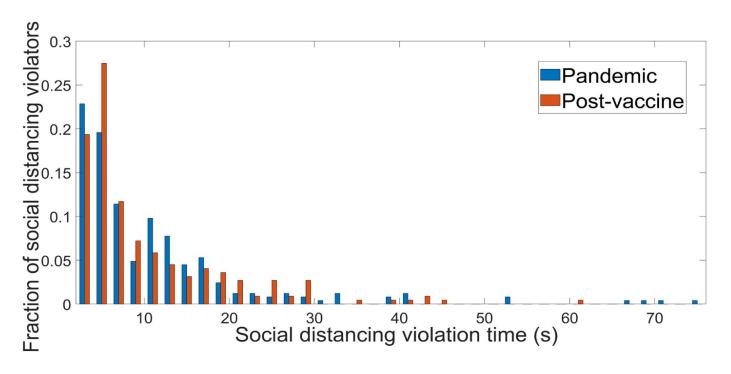

- Evaluating the impact of COVID-19 on pedestrians behavior using recorded videos from the COSMOS camera.
- Recorded videos consist of:
 - Pre-pandemic videos that were opportunistically recorded before the pandemic in June 2019.
 - Pandemic videos recorded between June 17 to July 20, 2020 (soon after the lockdown).
 - Post-vaccine videos recorded in May 2021 (after the vaccine became broadly available).


Impact of the Pandemic on Pedestrians' Density

- Density of the pedestrians has decreased after the lockdown (compared to pre-pandemic).
- After the availability of the vaccine the density has slightly increased.
 - Pre-pandemic, i.e., June, 2019
 - Pandemic, i.e., June-July, 2020
 - Post-vaccine, i.e., May, 2021

Compliance with Social Distancing Protocols

- Social distancing violation: when a pedestrian maintains less than 6 ft distance from other pedestrians with whom he/she is not walking.
- Percentage of social distancing violators (average, std):
 - **Pandemic**, i.e., June-July, 2020: (36.2, 17.88).
 - Post-vaccine, i.e., May, 2021: (40.34, 19.87).

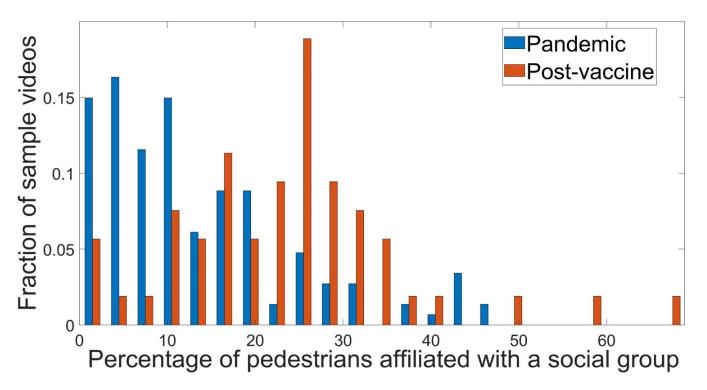


Normalized histogram of the percentage of pedestrians considered social distancing violators in the recorded videos.

Compliance with Social Distancing Protocols

Measurements of social distancing violation time (average, std):

- **Pandemic**, i.e., June-July, 2020: (10, 7.94) s.
- Post-vaccine, i.e., May, 2021: (10.34, 9.14) s.



Normalized histogram of duration of the social distancing violations incidents.

Compliance with Social Distancing Protocols

Percentage of pedestrians affiliated with a social group (average, std):

- **Pandemic**, i.e., June-July, 2020: (13.47, 11.42).
- Post-vaccine, i.e., May, 2021: (22.03, 10.15).

Normalized histogram of duration of percentage of pedestrians in a social group.

Conclusion and Future Work

Auto-SDA modules enable a generic object detection and tracker model to be used as a **social distancing analyzer system**:

- Multi-area calibration computes the on-ground distances between pedestrians with high accuracy.
- ID correction rectifies the output of the tracker model.
- Group detection excludes social groups from social distancing violation.
- Used real-word videos to evaluate the system and measure the impact of social distancing policies on pedestrian's social behavior.

Future work:

- Design and implementation of privacy-preserving methods.
 - Extension of Auto-SDA (B-SDA) will be presented in the demo session which uses bird's eye view camera.
- Integration of information from multiple cameras and sensors.
- Design of real-time algorithms, and extensive evaluation as the social distancing policies change.