Programmable and Open-access Millimeter-wave Radios in the PAWR COSMOS Testbed **Tingjun Chen**¹, Prasanthi Maddala², Panagiotis Skrimponis³, Jakub Kolodziejski², Xiaoxiong Gu⁴, Arun Paidimarri⁴, Sundeep Rangan³, Gil Zussman⁵, and Ivan Seskar² ¹Electrical and Computer Engineering, Duke University, ²WINLAB, Rutgers University ³Electrical and Computer Engineering, NYU, ⁴IBM Research, ⁵Electrical Engineering, Columbia University **ACM WINTECH 2021** Apr. 1, 2022 *The COSMOS testbed design and deployment is joint work with the COSMOS team (www.cosmos-lab.org). # COSMOS: Project Vision Cloud enhanced Open Software-defined MObile wireless testbed for city-Scale deployment - Latency and compute power are two important dimensions and metrics - Edge computing can enable real-time applications - Objective: Real-world investigation of urban environments with - Ultra-high bandwidth (~Gbps) - Low latency (<5 ms) - Powerful edge computing (~10–100 GIPS) - Enablers - 10s of 64-element millimeter-wave arrays - 10s of miles of Manhattan dark fiber - B5G edge cloud base stations - Remote-access - Programmability ### Wireless Testbeds Supported by the NSF Platforms for Advanced Wireless Research (PAWR) program #### **POWDER-RENEW** **Salt Lake City** COSMOS **New York City** #### **AERPAW** Research Triangle ARA **Central Iowa** • Other testbeds: 5TONIC, ADRENALINE, Arena, Bristol Is Open, CORNET, FED4FIRE+, FIT, ... # Objective: Take it Outside ### **COSMOS** Wireless Testbed # Videos https://www.cosmos-lab.org/ # COSMOS: Project Timeline Dark fiber b/w Columbia and 32AoA lit up Pilot completion and the first COSMOS workshop/tutorial Apr. 2018 IBM 28 GHz PAAM boards delivered Sept. 19 Dark fiber b/w Columbia and CCNY lit up Nov. 2020 **During** 2022* Oct. 2017 Project start May 2019 **FCC Innovation** Zone Sept. 2020 COSM-IC Dec. 2021 Phase 1 completion > *Deployments affected by the COVID-19 pandemic and supply chain # Columbia Large Node (lg1) # Medium Nodes (md1 and md2) # Rutgers and Columbia Sandboxes (sb1 and sb2) Sandbox1 (sb1) @Rutgers Sandbox2 (sb2) @Columbia CCNY Large and Medium Nodes (lg2 and md3) ### COSMOS: Design and Architecture - Key design challenge: Gbps+ performance and full programmability from the radio level to the central/edge cloud - Fully programmable multi-layered computing architecture for flexible experimentation #### Key technologies: - Software-define radios (SDRs) - Millimeter-wave (mmWave) radios - Optical x-haul networks - Software-defined networking and cloud - Control and management software COSMOS's multi-layered computing architecture • D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen, J. Kolodziejski, M. Sherman, Z. Kostic, X. Gu, H. Krishnaswamy, S. Maheshwari, P. Skrimponis, and C. Gutterman, "Challenge: COSMOS: A city-scale programmable testbed for experimentation with advanced wireless," in *Proc. ACM MobiCom*'20, 2020. ### COSMOS' mmWave Front Ends and Systems - Programmable mmWave front ends with different baseband options: - IBM 28 GHz 64-element PAAMs - Integration in Sandboxes 1 & 2 - Experiment with adaptive beamforming and mmWave MIMO communications - Sivers IMA 60 GHz WiGig transceiver - Various SDR and baseband options - Up to ~500 MHz bandwidth using the Xilinx UltraScale+ RFSoC platform ### COSMOS' mmWave Front Ends and Systems - Programmable mmWave front ends with different baseband options: - IBM 28 GHz 64-element PAAMs - Integration in Sandboxes 1 & 2 - Experiment with adaptive beamforming and mmWave MIMO communications - Sivers IMA 60 GHz WiGig transceiver - Various SDR and baseband options - Up to ~500 MHz bandwidth using the Xilinx UltraScale+ RFSoC platform - End-to-end mmWave systems: - Facebook Terragraph 60 GHz radios - InterDigital 28 GHz 5G NR platform - InterDigital 60 GHz EdgeLink nodes ### COSMOS' mmWave SDRs - Diagram of a 28 GHz SDR using the IBM 28 GHz PAAM subsystem board - Signal processing can be spread between radio node & edge cloud RAN ### COSMOS' mmWave SDRs Outdoor deployment at CCNY ### IBM 28 GHz PAAM Subsystem Board #### Two main control/data paths: - TX/RX beamforming control - TX/RX radio signal #### Three key components: - 28 GHz PAAM subsystem evaluation board - Beamforming control - SDR hardware and application software COSMOS' hardware and software (X. Gu, A. Paidimarri, B. Sadhu, C. Baks, S. Lukashov, M. Yeck, Y. Kwark, T. Chen, G. Zussman, I. Seskar, and A. Valdes-Garcia, "Development of a compact 28-GHz software-defined phased array for a city-scale wireless research testbed," in *Proc. IEEE MTT-S International Microwave Symposium (IMS'21)*, 2021. Finalist of IMS'21 Advanced Practice Paper Competition (APPC) ### IBM-Ericsson 28 GHz 64-element PAAM #### Multi-function module - 8 simultaneous 16-element beams in TX or RX - 2 simultaneous 64-element beams in TX or RX - Dual-polarization with independent data streams - Antenna gain uniformity & Orthogonal and fast beam controls (no calibration required) #### TX/RX beamforming - Support >20,000 independent beamforming directions with 1° beam-steering resolution - Beam-steering up to ±60° in azimuth/elevation - X. Gu, et al. "Development, implementation, and characterization of a 64-element dual-polarized phased-array antenna module for 28-GHz high-speed data communications," *IEEE Transactions on Microwave Theory and Techniques*, vol. 67, no.7, pp. 2975-2984, 2019. - X. Gu, et al. "A multilayer organic package with 64 dual-polarized antennas for 28GHz 5G communication," in *Proc. IEEE MTT-S International Microwave Symposium (IMS'17)*, 2017. - B. Sadhu, et al. "A 28-GHz 32-element TRX phased-array IC with concurrent dual-polarized operation and orthogonal phase and gain control for 5G communications," *IEEE Journal of Solid-State Circuits*, vol. 52, pp.12, pp. 3373–3391, 2017. **Best Paper Award** - B. Sadhu, et al. "A 28GHz 32-element phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication," in *Proc. IEEE International Solid-State Circuits Conference (ISSCC'17)*, 2017. Lewis Winner Award for Outstanding Paper (Best Paper Award) ### 28 GHz PAAM Subsystem Board: Architecture The 28 GHz subsystem evaluation board integrates a 64-elements phased array antenna module, power management, LO generation, and beamforming programmability through IF switches. ### 28 GHz PAAM Subsystem Board: API #### Subsystem board-level API commands: - paam_board.set_lo_switch(bool external) - paam board.pll init() - paam board.set_if_tx_h(bool combine) - paam board.set if tx v(bool combine) - paam board.set if rx h(bool combine) - paam board.set if rx v(bool combine) - paam board.get adc vals() #### IC-level API commands: - paam.enable(ic, fe list, txrx, pol) - paam.steer_beam(ics, txrx,pol, theta, phi) - paam.switch beam index(ic, txrx, pol, beam index) - paam.set arbitrary beam(ics, txrx, pol, gains, phases) ## 28 GHz PAAM Subsystem Board: Beamforming Example beam pattern measurements using the IBM 28 GHz PAAM subsystem boards in Sandbox 1 ### 28 GHz PAAM Subsystem Board: Timing #### Fast TX/RX beam-switching - A pre-recorded codebook with a number of TX/RX beamforming directions - TX/RX beam switching: 0.24 usec (f_{microzed} @50 MHz) #### Fast TX-RX and RX-TX switching - Required for TDD operation since the same antenna element(s) are shared between TX and RX - TX → RX switching: 3.36 usec (f_{microzed} @50 MHz) - RX → TX switching: 5.40 usec (f_{microzed} @50 MHz) ## Example Experiment: 28 GHz Channel Sounding #### Hardware: - 2x IBM 28 GHz PAAM boards and 2x USRP N310 SDRs (sampling rate: 62.5 MHz) in COSMOS Sandbox 2 #### Software: - IBM PAAM control API with fixed TX beam and RX beam sweeping within [-30°, 30°] in the azimuth plane - The RENEWLab Sounder framework with USRP support (https://github.com/renew-wireless/RENEWLab) ### Example Experiment: 28 GHz Channel Sounding #### Hardware: - 2x IBM 28 GHz PAAM boards and 2x USRP N310 SDRs (sampling rate: 62.5 MHz) in COSMOS Sandbox 2 #### Software: - IBM PAAM control API with fixed TX beam and RX beam sweeping within [-30°, 30°] in the azimuth plane - The RENEWLab Sounder framework with USRP support (https://github.com/renew-wireless/RENEWLab) ### Tutorials and Example Experiments #### IBM 28GHz PAAM Basics #### **Description** In this tutorial, we demonstrate the basic use of the IBM 28 GHz phased array antenna modules (PAAMs) with USRP N310 software-defined radios (SDRs) in the COSMOS Sandboxes (sb1, sb2). The following paper describes the integration of the IBM 28 GHz PAAMs (beta-version) with USRP SDRs in the COSMOS testbed. We would appreciate it if you cite this paper when publishing results obtained using the PAAMs deployed in COSMOS. - T. Chen, P. Maddala, P. Skrimponis, J. Kolodziejski, X. Gu, A. Paidimarri, S. Rangan, G. Zussman, and I. Seskar, "Programmable and open-access millimeter-wave radios in the PAWR COSMOS testbed," in Proc. ACM Mobi Com?'21 Workshop on Wireless Network Testbeds, Experimental evaluation & CHaracterization (WiNTECH'21), 2021. - X. Gu, A. Paidimarri, B. Sadhu, C. Baks, S. Lukashov, M. Yeck, Y. Kwark, T. Chen, G. Zussman, I. Seskar, and A. Valdes-Garcia, "Development of a compact 28-GHz software-defined phased array for a city-scale wireless research testbed," in Proc. IEEE International Microwave Symposium (IMS'21), 2021. Author: Tingjun Chen, Duke University (tingjun.chen [at] duke [dot] edu) Last updated: Mar. 26, 2022 More details can be found on https://wiki.cosmos-lab.org/wiki/Tutorials#SDRandWireless ### Summary - COSMOS: A ~1 sq. mile city-scale programmable advanced wireless testbed in West Harlem, NYC - One key technological building block of COSMOS: Programmable and open-access SDRs with different baseband options, computational capabilities, and form factors - 28 GHz front end based on the IBM phased array antenna modules (PAAMs) - 60 GHz front end based on the Sivers IMA WiGig transceivers - USRP SDRs (2974, N310, and B210) and Xilinx RFSoC board - Indoor deployment at Rutgers & Columbia available for community use - Ongoing outdoor deployment in CCNY - Example experiments and tutorials ### Acknowledgements - NSF grants CNS-1827923, OAC2029295, AST-2037845, CNS-1836901, CNS-1302336, CCF-1564142, CNS-1547332, and ECCS-1824434, NSF-BSF grant CNS-1910757, and the PAWR Industry Consortium - The COSMOS paper at ACM MobiCom'20: Dipankar Raychaudhuri, Ivan Seskar, Gil Zussman, Thanasis Korakis, Dan Kilper, Tingjun Chen, Jakub Kolodziejski, Michael Sherman, Zoran Kostic, Xiaoxiong Gu, Harish Krishnaswamy, Sumit Maheshwari, Panagiotis Skrimponis, Craig Gutterman - Alberto Valdes-Garcia, Bodhisatwa Sadhu, Stanislav Lukashov (IBM Research) - Google Research Scholar Award - IBM Academic Award - Semiconductor Research Corporation (SRC) - Industrial affiliates of NYU WIRELESS https://www.cosmos-lab.org/ https://tingjunchen.com/ tingjun.chen@duke.edu