A Spectrum Consumption Model-based Framework for DSA Experimentation on the COSMOS Testbed

ACM WINTECH 2021

Dragoslav Stojadinovic¹, <u>Prasad Prakash Netalkar</u>¹, Carlos E. Caicedo Bastidas³, Igor Kadota², Gil Zussman², Ivan Seskar¹, Dipankar Raychaudhuri¹

¹WINLAB, Rutgers University

²Columbia University

³Syracuse University

Motivation and Objectives

- Next generation wireless services and applications, including AR, IoT, and Smart-Cities, will increasingly rely on **Dynamic** Spectrum Access (DSA) methods enabling heterogeneous devices to share limited spectrum resources and coexist harmoniously
- We propose a new spectrum management architecture and experimentation framework to be tested in COSMOS
- SCM + CIL are used for spectrum coordination between multiple wireless networks

High Level Dynamic Spectrum Architecture

Spectrum Consumption Models (SCMs)

- (Data model that) Provides means to capture all the relevant parameters and phenomena that affect spectrum consumption for a device or spectrum dependent system
- SCMs support methods to compute compatibility (i.e., non-interference) between any two models without dependence on external databases of environmental or system data

SCM Constructs (IEEE 1900.5.2)

- Reference power
- Spectrum mask
- Underlay mask
- Power map

Power 20 dBm

Propagation Map

Intermodulation Mask

Time

Location

Spectrum Mask

13 July 2013

- Propagation map
- Intermodulation masks*

- Platform*
- Location
- Schedule
- Minimum power spectral flux density *
- Protocol or policy *
 - * Optional
- Underlay Mask System System 1 System 2 Transmitter System i Transmitter 1 Transmitter Transmitter 2 Transmitter_2 Transmitter r Transmitter i Receiver_1 Receiver_1 Receiver Receiver 2 Receiver_2 Receiver k Receiver m End of Set End of System
- Transmitter Model
- Receiver Model
- System Model
 - Consists of transmitter and receiver models that are part of a system
- Sets
 - Collective Consumption Set
 - Spectrum Authorization Set
 - Spectrum Constraint Set

Architecture and Protocol

- CIL collaboratively designed by competitors for DARPA SC2 as a language enabling coordination and synchronization between independent networks
- Implemented as a PUB/SUB service for several types of messages
- In our work, we extended CIL to support the exchange of protobuf representations of SCMs and other configuration and event messages

CIL Protocol:

- Register ():
 - Generated by WD to register with collaboration server/System
- Inform ():
 - Informs newly joined peer about existing peers
- Notify ():
 - Notifies existing peers about the new joined peer
- SCM Request ():
 - Message to request SCMs from peers
- SCM ():
 - Message to send SCM to the requester (protobuf)
- CT Report ():
 - Sends compatibility test report to peers
- Calibrate Radios ():
 - Message to calibrate SDRs with respective gain, frequency, modulation, etc.
- Leave ():
 - Generated by WD to exit the system

Timing Diagram: (DARPA CIL + SCM)

Algorithm: Illustrative Implementation

Algorithm: Current Implementation

Algorithm: Current Implementation

Algorithm: Current Implementation

Experimental Setup: COSMOS Sandbox (ORBIT GRID)

Experimental Setup: SCM Generation

```
- <spectrumMask>
     <resolutionBW>0.002</resolutionBW>
   - <scmMask>
         <refFrequency>0.0</refFrequency>
       - <inflectionPnt>
            <frequency>1999.0</frequency>
            <relativePower>-33.45</relativePower>
        </inflectionPnt>
       - <inflectionPnt>
            <frequency>1999.6125</frequency>
            <relativePower>-28.45</relativePower>
        </inflectionPnt>
       - <inflectionPnt>
            <frequency>1999.71</frequency>
            <relativePower>0.0</relativePower>
        </inflectionPnt>
       - <inflectionPnt>
            <frequency>2000.29</frequency>
            <relativePower>0.0</relativePower>
        </inflectionPnt>
       - <inflectionPnt>
            <frequency>2000.3875</frequency>
            <relativePower>-28.45</relativePower>
        </inflectionPnt>
       - <inflectionPnt>
            <frequency>2001.0</frequency>
            <relativePower>-33.45</relativePower>
        </inflectionPnt>
     </scmMask>
 </spectrumMask>
```

Transmitter spectrum mask Device: x310 and b210

```
- <underlayMask maskPowerMarginMethod="TotalPower">
     <resolutionBW>0.002</resolutionBW>
    - <scmMask>
       <inflectionPnt>
             <frequency>1998.8</frequency>
             <relativePower>-26.4485</relativePower>
         </inflectionPnt>
       <inflectionPnt>
             <frequency>1999.0</frequency>
             <relativePower>-35.0021</relativePower>
         </inflectionPnt>
       - <inflectionPnt>
             <frequency>1999.2</frequency>
             <relativePower>-38.298</relativePower>
         </inflectionPnt>
       - <inflectionPnt>
             <frequency>1999.4</frequency>
             <relativePower>-39.3706</relativePower>
         </inflectionPnt>
       <inflectionPnt>
             <frequency>1999.6</frequency>
             <relativePower>-40.0</relativePower>
         </inflectionPnt>
       - <inflectionPnt>
             <frequency>1999.8</frequency>
             <relativePower>-40.0</relativePower>
         </inflectionPnt>
       <inflectionPnt>
             <frequency>2000.0</frequency>
             <relativePower>-40.0</relativePower>
         </inflectionPnt>
       + <inflectionPnt>
       + <inflectionPnt>
       + <inflectionPnt>
       + <inflectionPnt>
       + <inflectionPnt>
       + <inflectionPnt>
     </scmMask>
  </underlayMask>
```

Receiver underlay mask Device: x310

Topology Setup: COSMOS Sandbox (ORBIT GRID)

MIMO Rack 24-5

All 3 links will interfere with each other if on the same channel

3 channels: 1999e6, 2000e6, 2001e6

MIMO Rack

23-5

Link 1 Setup

Link 2 Setup

Link 3 Setup


```
array([[1998.8
                  -19:408/9990, I999:
                                          -28.01239996
                  -31.30829996, 1999.4
                                         -32.38885506
     1999.2
     1999.6
2000.
                  -33.01029996,
                            1999.8
                                         -33.01029996,
                                         -33.01029996.
                  -33.01029996.
                                                        Test 1: Rx3-Tx2
     2000.4
                  -33.01029996, 2000.6
                                         -32,38089996,
                                         -28.01239904
                  -31.30829996, 2001.
     2001.2
                  -19.45879996111
-62.79076676, 1999.6125
                                         -27.79076676,
     1999.71
                 -29.34076676, 2000.29
                                         -29.34076676.
                                         -62.79076676] N
                  -57.79076676, 2001
array([[1998.8
                  -19.45879996, 1999.
                                          -28.01239996.
     1999.2
                  -31.30829996, 1999.4
                                         -32.38089996
                                                        Test 2: Rx3-Tx1
     1999.6
                                         -33.01029996
                  -33.01029996,
                  -33.01029996, 2000.2
     2000.4
                  -33.01029996.
                  -31.30829996.
     2001.2
                  -19.45879996]]]]
                   -36.50274674, 1999.6125
                                          -31.59274674
                  -3.05274674, 2000.2
                                          -3.0527467 111)]
array([[1997.8
                                          -28.01239996
     1998.2
                  -31.30829996, 1998.4
                                         -32.38089996.
                                                        Test 3: Tx3-Rx2
     1998.6
                                         -33.01029996,
                  -33.01029996.
     1999.
                  -33.01029996.
                            1999.2
                                         -33.01029996,
     1999.4
                  -33.01029996.
                            1999.6
                                         -32.38089996
     8.0001
                                         -28.01232396
                  -31.30829996,
                  -19.458799961111
                  -41.07684168, 1999.6125
                  -7.62684168, 2000.29
                                          -7.62684168,
      .999.71
                  -36.07684168, 2001
                                         -41.07684168]]
array([[1998.8
                  -19.45879996, 1999
                                                        Test 4: Tx3-Rx1
     1999.2
                  -31.30829996, 1999.4
     1999.6
                                         -33.01029996
                                         -33.01029996
NFO:cil collab client:###### TX NOT COMPATIBLE : DIFFERENT FREQUENCY SELECTED 2001000000.0000000#
```

List of compatibility tests between WD3's devices (Tx3 and Rx3) and existing Tx/Rx devices

Fosphor visualization showing the spectrum occupancy when the third network start operating

Conclusion and Future Work:

Conclusion:

- Designed and implemented a framework on the COSMOS testbed that enables experimentation and research of dynamic spectrum access mechanisms
- A modified version of CIL developed by DARPA was used to enable exchange of SCM messages between wireless networks
- We demonstrated the capabilities of the developed framework using an experiment with 3 networks,
 joining at different times and performing DSA coordination automatically using SCMs

Future Work:

- Large scale evaluation of Dynamic Spectrum Access with SCMs involving more complex algorithms
 - Frequency adjustments
 - Power adjustments
 - Impact of aggregate interference
- Distributed Spectrum Access with SCMs
 - Using Deep Reinforcement Learning
- Design and development of SCMs for mmWave devices

