Real-Time Video Anonymization
in Smart City Intersections

Alex Angus, Zhuoxu Duan, Gil Zussman, Zoran Kosti¢
Dept. of Electrical Engineering, Columbia University, New York City
{ala2197, zd2235, gz2136, zk2172@ } @columbia.edu

Abstract—Video cameras in smart cities can be used to provide
data to improve pedestrian safety and traffic management. Video
recordings inherently violate privacy, and technological solutions
need to be found to preserve it. Smart city applications deployed
on top of the COSMOS research testbed in New York City
are envisioned to be privacy friendly. This contribution presents
one approach to privacy preservation — a video anonymization
pipeline implemented in the form of blurring of pedestrian faces
and vehicle license plates. The pipeline utilizes customized deep-
learning models based on YOLOv4 for detection of privacy-
sensitive objects in street-level video recordings. To achieve real
time inference, the pipeline includes speed improvements via
NVIDIA TensorRT optimization. When applied to the video
dataset acquired at an intersection within the COSMOS testbed
in New York City, the proposed method anonymizes visible faces
and license plates with recall of up to 99% and inference speed
faster than 100 frames per second. The results of a comprehensive
evaluation study are presented. A selection of anonymized videos
can be accessed via the COSMOS testbed portal.

Index Terms—Smart City, Sensors, Video Surveillance, Privacy
Protection, Object Detection, Deep Learning, TensorRT.

I. INTRODUCTION

Smart cities are envisioned as societally beneficial con-
structs. Data and algorithms should be used to make the
cities more livable by reducing pollution, increasing pedestrian
safety, and supporting efficient traffic management. Cameras
and Internet of Things (IoT) sensors are essential for collecting
data needed to implement the smart city vision. All publicly
sensor-acquired data, and video surveillance in particular,
inherently impinge on personal privacy. There is therefore
both a technological and a legislative push to minimize, and
ultimately eliminate, the distribution of sensitive/private data.
Methods for eliminating the distribution of privacy-sensitive
data span a variety of technical solutions including: image
processing, data meta representation and deletion, encryption,
storage of data in edge clouds only, social community based
data management, and others [1]-[8].

This paper focuses on a video anonymization method for
privacy preservation in the form of blurring of pedestrian faces
and vehicle license plates. It is applied to data acquired by
street-level video cameras at an intersection within the NSF
PAWR COSMOS testbed [9] in New York City.

A. Privacy Concerns in Smart City Intersections

Real-time street level video camera feeds are required for
computer vision based smart city intersection applications.

Pedestrian detection, vehicle tracking, and crowd monitor-
ing [9]-[13] rely on high resolution video streams and can
benefit from ground floor camera positioning. Sensitive infor-
mation such as facial features and license plate characters are
inadvertently captured in the collection of street level videos.
This information can be leaked in downstream applications
if there is no intervention before the video distribution stage.
Furthermore, to support real-time applications, a privacy pro-
tection mechanism should introduce minimal communications
and computing latencies. This paper outlines the work towards
a deep learning based privacy protection mechanism for the
COSMOS pilot testbed intersection at 120" Street and Ams-
terdam Avenue at Columbia University in New York City.

B. COSMOS Testbed

The COSMOS testbed (Cloud Enhanced Open Software
Defined Mobile Wireless Testbed for City-Scale Deployment)
is an experimentation environment for advanced wireless re-
search [9]. It has sensing, high speed communications, and
Al-enabled edge computing capabilities suitable for the devel-
opment of smart city technologies. The testbed site at 120
St. and Amsterdam Ave, seen in Fig. 1, includes four high
resolution video feeds: two bird’s eye view cameras and two
street level cameras mounted on Columbia University’s Mudd
building!. The 1*' floor street-level camera located on 120" St.
is used in this work and its field of view is shown in Fig. 2.
The COSMOS edge cloud servers are the target deployment
platform for our anonymization pipeline. They are equipped
with optical x-haul transports allowing for interconnection of
Al-enabled edge computing clusters and provide scalable CPU
and GPU resources [8].

II. RELATED WORK

Notable work has been done both in the area of large
scale video anonymization and in real-time object detection.
Advances in object detection, such as the adoption of con-
volutional neural networks (CNN) and vision transformers,
have significantly improved the ability to locate and remove
sensitive information in images [14]-[18]. However, contem-
porary models often perform poorly on small objects and
operate at speeds well below real-time. Commercial systems
have been developed for real-time anonymization, but they
are expensive, inflexible, and are not a good fit for use cases

IThe two cameras on the right of Amsterdam Ave. are planned and not yet
in use.

Fig. 1: The intersection of 120" St. and Amsterdam Ave. in New
York City, where COSMOS cameras and edge-cloud nodes are
deployed.

such as described in this study. For example, [19] and [20]
provide proprietary anonymization API services, but they are
not accessible for experimentation and do not support 4K
resolution video. Additionally, API calls introduce uncontrol-
lable network latencies that make it difficult to operate under
the real-time target of 30 frames per second (FPS), or 33 ms,
for (i) sensor data acquisition; (ii) communication between
end-users, sensors, and edge cloud; (iii) Al-based inference
computation; and (iv) providing feedback to participants in
the intersection [8]. To avoid API calls over the network, on-
premises commercial software anonymization systems such
as [21] are available for lease, but the inflexibility remains
as only face anonymization is supported. Furthermore, general
anonymization products [22] provide only vague or inadequate
performance assessments such as “96% accuracy”.

A. Large Scale Video Anonymization

One of the earliest works towards automatic privacy pro-
tection is the anonymization of the Google Street View
footage [23] which utilized classical computer vision sliding
window techniques with postprocessing designed to maximize
the detection recall. This method blurred 89% of faces and
94—96% of licenses without using contemporary deep learning
techniques. Other designs use Haar-like features, cascade
classifiers, and CNNs to locate faces and license plates [24],
[25]; [26] reports license recall of 94.5% and inference times
within 100 ms. Similar to our approach, [27] uses a one stage
CNN-based YOLOV3 detector for locating license plates in
various complex scenes with reported mean average precisions
(mAP) over 90%.

B. Real Time Object Detection

In addition to high recall video anonymization, we aim for
pipeline inference speed under 33ms to match the camera
frame capture rate of 30 FPS. This is challenging for the
following reasons: (i) reliable small object detection requires

Fig. 2: (A) First floor street-level camera view, 120" St. and
Amsterdam Ave; (B) non-anonymized input frame with faces and
license plates exposed; (C) output frame with anonymized faces and
license plates.

large video input resolution; (ii) contemporary video com-
pression and encoding implies at least one-frame buffering;
(iii) networking latencies can be significant; (iv) the fastest
streaming methodologies such as WebRTC promise on the or-
der of 200-300 ms latencies; (v) computational complexity of
deep learning models is non-trivial [28]-[31]. Several studies
have been dedicated to real time use cases of YOLOv4 [32]—
[35], but only with input resolutions smaller than 832 x 832.
Techniques such as optimal scheduling for heterogeneous
computing devices [36] and weight pruning [37] have been
shown to incur only minimal decreases in accuracy with sig-
nificant increases in throughput for YOLOv4. Other strategies
such as reduced floating point precision calculations, layer
fusion, and kernel auto tuning are successfully implemented
for YOLOv4 [38], [39] using NVIDIA’s TensorRT [40] frame-
work. This research utilizes TensorRT to minimize inference
latencies without changing the underlying structure of our
customized YOLOv4-based anonymization models.

III. METHODOLOGY
A. COSMOS Intersection Dataset

This study uses a subset of the COSMOS 1* floor intersec-
tion dataset, consisting of 16 videos recorded from the view
seen in Fig. 2. Each video is 180 seconds long and recorded
at a frame rate of 30 FPS with resolution of 3840 x 1920
pixels. Recordings were selected with a variety of weather
and lighting conditions including daytime, nighttime, cloudy,
sunny, and rainy conditions. Every sixth frame was selected
for annotation, to decrease the similarity between sequential
frames, for a total of approximately 900 annotated frames per
video. Bounding box annotations of 9 classes, including faces
and license plates, were generated using the browser based
Computer Vision Annotation Tool (CVAT) [41]. In total, the

6000 2500

5000
2000

4000
1500

Cout

3000
1000
2000

1000 500

0 0

0 200 400 600 800 1000 500 1000 1500 2000 2500

Object Pixel Area

Fig. 3: Distributions of face (left) and license plate (right) areas
below (blue) and above (orange) the visible area thresholds.

dataset comprises over 14,000 annotated frames with 70,186
faces and 124,614 license plates. Fig. 3 shows the ground truth
bounding box area distributions for both classes. The median
object pixel area is 198 pixels for faces and only 83 pixels for
license plates in the original 4K video resolution. Note that
most of the object areas are significantly below the COCO
small object threshold of 32 x 32 pixels [42]. This requires us
to use detection models with large input resolutions to preserve
as many object features as possible.

B. YOLOv4 Object Detection

1) YOLOv4: The YOLO (You Only Look Once) object de-
tection algorithms are single stage models that simultaneously
detect, localize, and classify objects in an image. They are
designed to be accurate and fast; each version of YOLO has
improved the previous inference speed benchmark. This work
is based on YOLOv4, which consists of the CSPDarknet53
backbone, SPP and PAN necks, and the YOLOv3 head [32].
The CSPDarknet53 backbone generates feature maps at differ-
ent scales, the SPP and PAN necks collect the feature maps,
and the YOLOV3 head uses them to generate predictions.
YOLOV4 is trained with the CloU loss function, DropBlock
regularization, and a plethora of photometric and geometric
data augmentations. At the time of this work, model code
for a “YOLOvVS5” was circulated and rumored to be better
performing than YOLOV4 in terms of accuracy and speed, but
the validity of the benchmark results was yet to be confirmed.

2) Darknet Training: For training on our custom intersec-
tion dataset, we use the Darknet framework [43]. Darknet is an
open source neural network framework written in CUDA and
C, and it is the original framework of the YOLOv4 model
development. This simplifies training, experimentation, and
modifications to YOLOv4. We train YOLOv4 models to detect
two classes of objects, faces and license plates, with model
input sizes of 608 x 608, 960 x 960, and 1440 x 1440. Our
models are trained for 10,000 iterations each on a single T4
GPU for the 608 x 608 and 960 x 960 models and a single
A100 GPU for the 1440 x 1440 model. The CSPDarknet53
backbone is pre-trained on the MS COCO dataset [44]. Data
augmentation techniques, including CutOut, MixUp, CutMix,
and Mosaic, are applied during training as described in [32].

We experimented with aggregating, then randomly shuffling
and splitting all frames to generate the training and validation

sets. We found that significant model overfitting can occur
because stationary objects such as parked vehicles and seated
pedestrians appear identically in consecutive frames. To reduce
the models’ tendency to overfit to stationary objects, we use
14 separate videos for training and 2 for validation. We use the
weights with the highest validation set mean average precision
(mAP) to maximize the generalization of our models.

C. Pipeline Integration

After our models are trained using Darknet, the fine-
tuned parameters are transferred to a PyTorch implementation
of the YOLOv4 model architecture. Accuracy performance
measurements, including mean average precision (mAP) and
class recall, are recalculated on the validation set using the
PyTorch model to verify a successful framework transfer. See
Fig. 5 for validation set average precision performance by
model input resolution. The Darknet model parameters are also
transferred to a TensorRT YOLOv4 implementation to max-
imize the inference throughput. Details of the accuracy and
latency evaluations are outlined in Sections IV-A and IV-B.
The PyTorch and TensorRT face and license plate detection
models are integrated into the anonymization pipeline, which
is composed of the following:

o Video frame read: Frames are read sequentially from a

MP4 video file using OpenCV VideoCapture.

o Frame preprocessing: Frames are resized to the model
input resolution and transferred to GPU memory in tensor
batches.

o Model inference: Preprocessed tensor batches are passed
through the YOLOv4 model.

o« NMS: Non-maximum suppression is performed on the
output bounding box predictions.

o Frame postprocessing and anonymization: Output pre-
dictions are read from the GPU and frames are passed
through the anonymization module.

¢ Video frame write: Frames are written sequentially to
an output MP4 video file using OpenCV VideoWriter.

The pipeline is implemented in Python for PyTorch models
and in C++ for TensorRT models.

1) Anonymization Module: The anonymization module
takes the original non-anonymized frame and the detection
coordinates as input, and it returns an anonymized frame as
output. The simplest anonymization strategy is to completely
mask detected areas. This effectively removes the sensitive
information from the frame, but it obscures the appearance
of intersection objects and may reduce the effectiveness of
downstream video tasks. Applying a Gaussian blur to the
detected areas effectively removes sensitive information from
the frame without changing the overall appearance. We opt
for this technique in our anonymization pipeline as it has
been shown that blurring obfuscations result in only slight
decreases in computer vision tasks [45]. An example output
frame anonymized with the Gaussian blur module is depicted
in Fig. 2. In applications where a Gaussian blur removes
too many object features to be useful, the facial features and
license plate characters must be obfuscated such that privacy

is protected with the underlying feature distribution remaining
constant. In such a scenario, GAN based privacy protection
models such as [46] could replace the mask anonymization
and blur anonymization modules.

2) TensorRT Model Implementation: The YOLOv4 model
architecture includes 110 convolutional layers and over 60 mil-
lion parameters. The large computational cost of the forward
pass during inference, which increases exponentially with
input resolution, makes real-time anonymization a challenge.
Offloading parallel inference calculations from the CPU to the
GPU lowers the inference speed by orders of magnitude. But,
even these speedups are not sufficient for large input models
running on lower tier GPUs. We show that further inference
optimizations including layer and tensor fusion, kernel auto
tuning, and reduced precision floating point calculations with
NVIDIA’s TensorRT framework [40] can reduce the inference
time to facilitate real-time anonymization.

To convert our trained models from Darknet to TensorRT,
we reconstruct the YOLOv4 model architecture using the
TensorRT C++ API and load the model parameters layer by
layer during the serialization phase as illustrated in Fig. 4.
After model parameters are loaded into the model, TensorRT
automatically performs several experiments to maximize the
throughput of the inference engine for the specific pipeline
configuration which includes GPU architecture, floating point
precision, batch size, model input size, etc. See Table II for ex-
ample pipeline configurations and timing measurements. In the
deserialization phase the optimized TensorRT model is loaded
into memory. Inference can commence once memory buffers
are allocated for the input frames and output predictions.

IV. EVALUATION RESULTS

This section presents the results of accuracy evaluations for
different object size thresholds and latency evaluations for both
PyTorch and TensorRT anonymization pipelines. A selection
of anonymized videos can be accessed via the COSMOS
testbed portal [47].

A. Accuracy Evaluation

Models used for privacy critical applications must correctly
identify the highest possible number of true positives (TP),
and the metric that is most indicative of this performance is
the recall [23] TPZ-L%' In our case a true positive corresponds
to a visible, detected, and anonymized face or license plate in
one frame. A false negative (FN) corresponds to one which is
missed, where visible is defined below, and missed is defined
as more than half the object remaining non-anonymized. As
anonymization in our pipeline occurs within the bounding box
detection, this definition of missed objects, or false negatives,
corresponds to a bounding box intersection over union (IoU)
threshold of 0.5. To maximize anonymization recall we set the
detection confidence and NMS thresholds to 0.0125 and 0.4,
respectively.

Not all faces and license plates in a given frame are identifi-
able. For example, the faces and licenses in Fig. 6 show objects
captured far away from the camera. The resulting images

are low resolution, and we posit that sufficient information
cannot be gleaned to identify such objects as specific faces or
license platesz. Therefore, we define visible objects as faces
and license plates with bounding box areas larger than 250
pixels and 900 pixels, respectively, in the original video frame.
Fig. 6 shows faces and licenses below the visible pixel area
thresholds and Fig. 3 shows the distribution of visible objects.
Note that these thresholds are conservative benchmarks for
identification — many faces and licenses above these thresholds
also cannot be identified by the eye.

1) Programmatic Accuracy Evaluation: The fidelity of our
anonymization pipeline depends on consistent and accurate
face and license plate detection. Furthermore, the focus of our
accuracy evaluation is on objects deemed identifiable: faces
where facial features can be discerned (> 250 pixels) and
license plates where characters can be recognized (> 900
pixels). Omission of objects below the visible threshold re-
duces the number of objects considered for evaluation. We
exclude these objects because they are irrelevant for privacy
protection, not because the models are incapable of detecting
them. Notably, the 1440 x 1440 model scores over 96% mAP
for objects larger than 100 pixels, which is far smaller than
the visible threshold for both faces and license plates (Fig. 5).

Fig. 7 shows plots of validation recall as a function of
pixel area threshold. As the pixel area threshold is increased, a
smaller number of objects are considered in the evaluation as
only objects with large pixel areas, or cross sections, remain.
Objects with large cross sections are detected, and ultimately
anonymized, with a higher recall than those with smaller cross
sections. As expected, the models with large input resolutions
(960 x 960 and 1440 x 1440) yield higher recalls than the
smaller input resolution model (608 x 608) for both faces
and license plates. Fig. 8 gives an overview of the detection
performance on the validation set for both classes with the
1440 x 1440 model at 98.9% face and 99.9% license plate
recall for visible objects. We note that face recall is more
strongly affected by model input resolution than license plate
recall in the COSMOS 1* floor intersection dataset.

2) Manual Accuracy Evaluation: High quality custom an-
notated datasets are necessary for the fine tuning of supervised
deep learning models, but they require an immense amount
of labor to produce. Ground truth labels are therefore scarce
and must be prioritized for training. This scarcity limits the
extent of programmatic evaluations that can be performed,
and we must use other techniques such as manual evaluations
to increase the confidence in our results. In this section we
outline our approach to and results of manual evaluation of
the anonymization pipeline output. In short, we pass a set of
intersection videos through the pipeline, then visually inspect
the output for missed objects, where the definition of missed
remains the same as in Section IV-A.

When performing manual evaluations, it is impractical to
adhere to the pixel area threshold definitions. One would

2 Although there exist techniques for recovering information from very low
resolution images [48], these methods are outside the scope of this work.

TensorRT Anonymization Pipeline

Fine Tuned Darknet YOLOv4

Serialize

Deserialize <

Preprocessed Batch

(@@9
//@)@9°

TensorRT GPU Inference Optimization

__ﬁ%ﬂaaz*
Ll:_._'

Deserialized Inference Engine

Serialized Engine

—

Anonymized Video

(9

NMS

9

Postprocess

Fig. 4: The TensorRT Anonymization Pipeline. Inference optimization calculations are performed in the serialize phase to produce the
serialized inference engine. In the deserialize phase videos are preprocessed and passed through the inference engine for detection and
subsequent anonymization.

- mAP
—e— Face AP
—e— License AP

95

90

70

608x608 960x960

Model Input Resolution

1440x1440

Fig. 5: Average precision by class and mAP vs model input
resolution of YOLOvV4 detection models.

need to count pixel by pixel to determine if an object is
relevant. Instead, we define areas of the frame where objects
are considered visible, and therefore identifiable. Fig. 9 shows
1% floor video frames with the visible areas indicated. We
anonymize a diverse set of 8 test videos with both the 960x960
and 1440 x 1440 resolution versions of the anonymization
pipeline?, then manually inspect each output video for missed
objects in the visible areas. Each test video is between 5,340
and 5,372 frames with an average of 6,513 visible faces
and 11,571 visible license plates per video. The results of
the manual accuracy evaluation largely support the results of

3The 608 x 608 resolution model was excluded from manual evaluations.

Faces < 250 pixels Licenses < 900 pixels

B APENEEHEE [N S . S T T
RISEELMARIACHENE s P Ao
] EREEREAEE S ™= N W T i .
sEiaEgaE EHEDE 7 DN T T B
B AERESRUNA =m0 2 am S BN B T T
¥ CHHH A Lt e R
B ENEEEANAE SR T.EEEMDE T 8
| EslruiSE SN § MEPDE™ ™S8
= :g' :2:: T E R E S .
f SRrEREE ;. e T O .
[FPERRENEAE N ew T s

Fig. 6: Faces (left) and license plates (right) at and below the
visible thresholds.

the programmatic accuracy evaluation with the 1440 x 1440
resolution YOLOv4 model scoring an average recall of 98.6%.
The recall by class as well as the 960 x 960 results are shown
in Table I. These results show that both the 960 x 960 and
1440 x 1440 input resolution models detect visible faces and
license plates with high recall, and that there is an average
difference of only 0.2% recall between the 1440 x 1440
and 960 x 960 model. This indicates that there may be a
point at which increasing the model input resolution results
in diminishing returns as far as recall is concerned, and also
that there are some edge cases where our pipeline consistently
fails. Specific cases including license plate border occlusion,
superimposed faces, partial license plate occlusion from tree
branches, detection of public bus license plates, and other rare

Fig. 7: Face (left) and license plate (right) detection recall as a
function of object pixel threshold. True positives (green) and false
negatives (red) comprise the evaluation set. Recall (blue) increases

as smaller objects are excluded. Plots are shown for 608 x 608

(top), 960 x 960 (middle), and 1440 x 1440 (bottom) input
resolutions.

1.00 =Em 608 x 608 0.997 0.999 0.999

N 960 x 960
N 1440 x 1440

0.95

0.90

Recall

0.85

0.80

0.75

Faces License Plates

Fig. 8: Validation recall of face and license plates with cross
section areas larger than the visible pixel area threshold.

scenarios are identified and illustrated in Fig. 10. Given that
we use supervised face and license plate detection models,
more training data encompassing these edge cases is required
to further increase the recall of the anonymization pipeline.

B. Latency Evaluation

To assess the real-time performance of our anonymization
pipeline, we perform an exhaustive set of full pipeline timings
with varying configurations of model input resolution, GPU
hardware, floating point precision, batch size, and input video

Fig. 9: 1% floor video frames with visible area boundaries for faces
(left) and license plates (right) drawn for manual evaluations.

TABLE I: Manual Accuracy Evaluation Results

Model Face Recall License Plate Recall
Resolution

960x960 98.24% 98.61%

1440x1440 98.61% 98.62%

resolution. Timing is broken down by the pipeline subpro-
cesses as described in Section III-C: video frame read, frame
preprocessing, model inference, NMS, frame postprocessing
and anonymization, and video frame write. The pipelines
are implemented on Google Cloud Platform using a sin-
gle NVIDIA TeslaT4 or A100-SXM4 GPU with 15GB and
40GB of memory, respectively. The TensorRT anonymization

Plate Border Occlusion Buses and Branches

.

Edge Edge Cases

=i

Fig. 10: Edge cases where the YOLOv4 face and license detection
consistently fails.

mmm TensorRT C++ APl Pipeline
[PyTorch Pipeline

B
35 .
30 =

@

Exs

Q

- .

=

@

%20 [

g

<<
15 |] .. [|
m

: H

Frame Read Preprocess Inference NMS Frame Write

+
Postprocess
Subprocess

Fig. 11: Average time by subprocess of the PyTorch and TensorRT
anonymization pipelines configured with the 960 x 960 input
resolution model, batch size of 1, and FP32 precision.

Frame Read

Frame Write Frame Read

Preprocess Frame Write
NMS + Postprocess

Preprocess

NMS + Postprocess

Inference Inference

Fig. 12: Time profile breakdowns of the TensorRT anonymization

pipeline with model input resolution of 960 x 960 on T4 GPU with

batch size of 1 (left) and 608 x 608 on A100 GPU with batch size
of 8 (right). Both profiles use FP16 precision.

pipeline was also implemented on an NVIDIA Jetson Nano
with an integrated 4GB TegraX1 GPU, but the Jetson Nano is
not capable of operating the anonymization pipeline in real-
time. See Tables III and IV for the full inference speed and
pipeline time profiling results.

In Fig. 11 we directly compare the time profiles of the
PyTorch and the TensorRT anonymization pipelines configured
with the 960 x 960 input resolution model, FP32 precision,
1 x A100, and a batch size of 1. Unsurprisingly, the C++
TensorRT pipeline has a higher throughput than the Python
PyTorch pipeline in all subprocesses except frame preprocess.
As a fraction of the total pipeline time, model inference
accounts for 52.40% of the PyTorch pipeline, whereas it is
45.54% of the TensorRT pipeline. When using FP16 precision
and batch size of 8 with the TensorRT pipeline, the fraction of
pipeline time spent on inference drops to 32.51% as a result
of the TensorRT inference optimizations and the capacity of
the A100 GPU to compute size 8 tensor batches.

Fig. 12 shows the time profile breakdowns by subprocess of
two configurations of the TensorRT anonymization pipeline. In
both profiles the majority of the pipeline time is spent on the
model inference subprocess, but as model input resolution is
reduced from 960 x 960 to 608 x 608 and batch size is increased
from 1 to 8, we see that the combined frame read and write op-
erations begin to occupy a larger portion of the time profile. As
input resolution decreases and GPU compute power increases,
the computational bottleneck of the anonymization pipeline
shifts from inference computation to memory copy operations.
This indicates that, given the sufficient GPU computing re-
sources at the COSMOS edge cloud computing node, real-time
implementation of the anonymization pipeline is achievable.
Additionally, the anonymization module (blurring) does not
add significant overhead to the end-to-end pipeline speed, as
all anonymization operations are completed in under 1 ms per
frame* using OpenCV. The optimal real-time configuration of
the anonymization pipeline uses the 960 x 960 input resolution
model, 1 x A100 GPU, a batch size of 1, and FP16 precision.
With this configuration the pipeline anonymizes faces and
license plates with recall over 98% and achieves an inference
speed of 61.22 FPS — well beyond the 30 FPS threshold of
standard real-time operation.

V. CONCLUSION

This paper presents a deep learning based anonymization
pipeline for video in smart city intersections. The pipeline
is implemented using YOLOv4 detection models, in both
PyTorch and NVIDIA TensorRT, customized for the street-
level intersection dataset collected at an intersection at the
COSMOS testbed. Rigorous accuracy evaluations demonstrate
that the pipeline anonymizes over 99% of visible faces and
license plates. Inference optimizations significantly improve
the pipeline throughput and allow for operation at speeds
significantly faster than the real-time threshold of 30 frames
per second. Through manual accuracy evaluations it is shown
that there are some edge cases where the pipeline consistently
fails. Because of the supervised nature of the deep learning
models, these edge cases can be rectified through collection,
labeling, and training of an even larger intersection dataset
with more examples of the problematic scenarios, or by
augmentation techniques. The experiments demonstrate that
GPUs used in edge-cloud servers, such as NVIDIA T4 and
A100, can operate the pipeline in real time. Lower-end devices
such as NVIDIA Jetson Nano fall short in terms of real
time performance. Further work includes: (i) weight pruning
to reduce the computational burden of the forward pass on
edge devices; (ii) the development of unsupervised detection
techniques to eliminate the dependency on large hand-labeled
datasets; and (iii) exploration of augmentation techniques to
combat the failure of anonymization in edge cases.

The presented deep learning-based video anonymization
pipeline provides automatic, comprehensive, and fast privacy
protection for smart city intersection video feeds.

4This excludes the Jetson Nano pipeline.

TABLE II: Anonymization Pipeline Timing with Various Configurations

Model GPU Precision Batch Size Full Frame Read Preprocess Inference NMS + Frame
Input Pipeline Postprocess Write
Resolution
(pixels)

TensorRT C++ Pipeline
608x608 TegraX1 FP16 1 653.79 5.13 25.94 563.34 8.23 51.13
960x960 TegraX1 FP16 1 1491.49 10.79 64.74 1305.81 10.80 99.32
1440x1440 TegraX1 FP16 1 3285.98 23.74 144.34 2899.58 13.40 204.89
608x608 TeslaT4 FP16 1 29.06 1.74 4.40 17.94 0.27 4.70
960x960 TeslaT4 FP16 1 63.34 3.65 10.67 37.68 0.47 10.86
960x960 TeslaT4 FP16 4 63.71 391 10.73 38.32 0.45 10.28
960x960 TeslaT4 FP16 8 63.37 3.87 10.96 38.48 043 9.63
1440x1440 TeslaT4 FP16 1 139.35 7.64 23.43 84.97 0.76 22.55
1440x1440 TeslaT4 FP16 4 139.93 7.88 23.51 85.97 0.75 21.81
608x608 TeslaT4 FP32 1 44.75 1.59 434 33.99 0.24 4.58
960x960 TeslaT4 FP32 1 97.46 3.66 10.52 72.41 0.44 10.43
960x960 TeslaT4 FP32 4 99.34 3.89 11.05 73.51 0.45 10.43
1440x1440 TeslaT4 FP32 1 223.01 7.65 23.43 168.4 0.76 22.78
608x608 A100 FP16 1 21.82 1.90 441 9.83 0.33 5.34
960x960 A100 FP16 1 42.44 4.05 9.7 16.33 0.51 11.83
960x960 A100 FP16 4 38.82 4.00 9.75 13.16 0.51 11.39
960x960 A100 FP16 8 38.1 4.03 10.13 12.39 0.49 11.05
1440x1440 A100 FP16 1 83.19 8.2 21.22 28.26 0.83 24.67
1440x1440 A100 FP16 4 79.35 8.14 21.34 24.67 0.80 24.39
608x608 A100 FP32 1 23.64 1.74 4.28 12.17 0.28 5.15
960x960 A100 FP32 1 46.88 39 9.66 21.34 0.50 11.47
960x960 A100 FP32 4 42.47 3.88 9.92 17.09 0.49 11.08
1440x1440 A100 FP32 1 91.62 8.07 21.06 37.22 0.81 24.45

PyTorch Python Pipeline
608x608 TeslaT4 FP32 1 78.43 3.63 491 61.01 0.01 7.65
960x960 TeslaT4 FP32 1 173.31 9.52 10.93 134.77 0.01 16.08
608x608 A100 FP32 1 63.05 3.02 3.89 46.86 0.01 8.01
960x960 A100 FP32 1 79.94 11.07 8.06 41.89 0.01 16.89
960x960 A100 FP32 2 63.73 7 8.1 30.22 0.02 16.62
1440x1440 A100 FP32 1 130.89 14.12 20.11 58.86 0.02 34.41

All values are average execution time per frame measured in milliseconds. Timing operations incur negligible overhead (=~ 10us).

TABLE III: TensorRT Anonymization Model Inference Speeds

TABLE IV: Jetson Nano (TegraX1) TensorRT Anonymiza-
tion Model Inference Analysis

Model Batch Inference Inference Inference
Input Size Speed Time (s) (% pipeline
Resolution (FPS) time)
(pixels)

608x608 1 1.78 0.563 86.17
608x608 4 1.84 0.542 87.3
960x960 1 0.77 1.305 87.55
960x960 4 0.73 1.361 88.23
1440x1440 1 0.34 2.899 88.24

Model Batch T4 FP16 A100 T4 A100
Input Size Inference FP16 FP32 FP32
Reso- Speed Inference Infer- Inference
lution (FPS) Speed ence Speed
(pixels) (FPS) Speed (FPS)
(FPS)
608x608 1 55.73 101.77 29.42 82.14
608x608 4 62.65 138.27 30.96 105.19
608x608 8 65.56 149.88 32.22 121.82
960x960 1 26.54 61.22 13.81 46.87
960x960 4 26.09 75.98 13.60 58.52
960x960 8 25.99 80.73 13.69 66.26
1440x1440 1 11.77 35.39 5.94 26.87
1440x1440 4 11.63 40.54 5.93 32.57
1440x1440 8 11.71 46.97 5.89 34.06
ACKNOWLEDGMENT

This work was supported in part by NSF grants CNS-
1827923, CNS-1910757, OAC-2029295, CNS-2038984, and

CNS-2148128.

REFERENCES

[1] D. Feldman, C. Xiang, R. Zhu, and D. Rus, “Coresets for differentially
private k-means clustering and applications to privacy in mobile sensor

networks,” in Proc. ACM/IEEE IPSN, 2017.

[2]

[3]
[4]

[5]

[6]

[7]

G. Mai, K. Cao, X. Lan, and P. C. Yuen, “Secureface: Face template
protection,” IEEE Transactions on Information Forensics and Security,
vol. 16, pp. 262-277, 2021.

V. N. Boddeti, “Secure face matching using fully homomorphic encryp-
tion,” in Proc. IEEE BTAS, 2018.

M. K. Morampudi, M. V. N. K. Prasad, and U. S. N. Raju, “Privacy-
preserving iris authentication using fully homomorphic encryption,”
Multimedia Tools and Applications, vol. 79, pp. 19215 — 19237, 2020.
Q. Meng, F. Zhou, H. Ren, T. Feng, G. Liu, and Y. Lin, “Improving
federated learning face recognition via privacy-agnostic clusters,” arXiv
preprint:2201.12467, 2022.

R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proc. 53rd Annual Allerton Conference on Communication, Control, and
Computing, 2015.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

TABLE V: PyTorch Anonymization Model Inference Speeds

Model Input Reso- Batch T4 Inference A100 Inference
lution (pixels) Size Speed (FPS) Speed (FPS)
608x608 1 16.39 21.34
608x608 2 17.63 43.83
608x608 4 - 61.94
608x608 8 - 70.13
960x960 1 7.42 23.87
960x960 2 - 33.09
960x960 4 - 36.61
1440x1440 1 - 16.99
1440x1440 2 - 12.86

Configurations (batch sizes, model input sizes) that could not fit into T4
GPU memory are omitted from the table.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics, pp. 1273-1282, PMLR,
2017.

Z. Kosti¢, A. Angus, Z. Yang, Z. Duan, I. Seskar, G. Zussman, and
D. Raychaudhuri, “Smart city intersections: Intelligence nodes for future
metropolises,” arXiv preprint:2205.01686, 2022.

D. Raychaudhuri, I. Seskar, G. Zussman, T. Korakis, D. Kilper, T. Chen,
J. Kolodziejski, M. Sherman, Z. Kostic, X. Gu, H. Krishnaswamy, S. Ma-
heshwari, P. Skrimponis, and C. Gutterman, “Challenge: COSMOS:
A city-scale programmable testbed for experimentation with advanced
wireless,” in Proc. ACM MobiCom, 2020.

M. Ghasemi, Z. Yang, M. Sun, H. Ye, Z. Xiong, Z. Kostic, and
G. Zussman, “Demo: Video-based social distancing evaluation in the
COSMOS testbed pilot site,” in Proc. ACM MobiCom’21, 2021.

S. Yang, E. Bailey, Z. Yang, J. Ostrometzky, G. Zussman, I. Seskar, and
Z. Kostic, “COSMOS smart intersection: Edge compute and communi-
cations for bird’s eye object tracking,” in Proc. SmartEdge, 2020.

M. Ghasemi, Z. Kostic, J. Ghaderi, and G. Zussman, “Auto-SDA:
Automated video-based social distancing analyzer,” in Proc. ACM Hot-
EdgeVideo, 2021.

Z. Yang, M. Sun, H. Ye, Z. Xiong, G. Zussman, and Z. Kostic,
“Bird’s-eye view social distancing analysis system,” in Proc. IEEE ICC
Workshops, 2022.

Z. Cai, Q. Fan, R. S. Feris, and N. Vasconcelos, “A unified multi-
scale deep convolutional neural network for fast object detection,” arXiv
preprint:1607.07155, 2016.

T.-Y. Lin, P. Dollar, R. B. Girshick, K. He, B. Hariharan, and S. J.
Belongie, “Feature pyramid networks for object detection,” in Proc.
IEEE CVPR, 2017.

H. Wu, B. Xiao, N. C. F. Codella, M. Liu, X. Dai, L. Yuan, and
L. Zhang, “CvT: Introducing convolutions to vision transformers,” in
Proc. I[EEE/CVF ICCV, 2021.

C. Li, J. Yang, P. Zhang, M. Gao, B. Xiao, X. Dai, L. Yuan, and
J. Gao, “Efficient self-supervised vision transformers for representation
learning,” arXiv preprint:2106.09785.

M. Caron, H. Touvron, I. Misra, H. J’egou, J. Mairal, P. Bojanowski, and
A. Joulin, “Emerging properties in self-supervised vision transformers,”
in Proc. IEEE/CVF ICCV, 2021.

Brighter Al “Brighter Al privacy protection.” https://brighter.ai/product/.
Accessed May 5, 2022.

Sightengine, “Sightengine video redaction
https://sightengine.com/docs/video-redaction-and-anonymization.
Accessed May 5, 2022.

Sightcorp, “Sightcorp by raydiant face blur.” https://sightcorp.com/face-
blur/. Accessed May 5, 2022.

Gallio, “Gallio automated image and
https://gallio.pro/. Accessed May 5, 2022.
A. Frome, G. Cheung, A. Abdulkader, M. Zennaro, B. Wu, A. Bissacco,
H. Adam, H. Neven, and L. Vincent, “Large-scale privacy protection in
google street view,” in Proc. IEEE ICCV, 2009.

F. Mireshghallah, M. Taram, P. Vepakomma, A. Singh, R. Raskar,
and H. Esmaeilzadeh, “Privacy in deep learning: A survey,” arXiv
preprint:2004.12254, 2020.

C. A. Barbano, E. Tartaglione, and M. Grangetto, “Bridging the gap

APL”

video anonymization.”

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

(38]

(39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

between debiasing and privacy for deep learning,” in Proc. IEEE/CVF
ICCV Workshops, 2021.

Y. Zhou, M. Lv, Z. Ling, and D. Li, “Multiple license plate location al-
gorithm in complex scene,” in Proc. IEEE International Conferences on
Ubiquitous Computing Communications (IUCC) and Data Science and
Computational Intelligence (DSCI) and Smart Computing, Networking
and Services (SmartCNS), 2019.

Y. Zou, Y. Zhang, J. Yan, X. Jiang, T. Huang, H. Fan, and Z. Cui,
“A robust license plate recognition model based on Bi-LSTM,” IEEE
Access, vol. 8, pp. 211630-211641, 2020.

S. Nacakli and A. M. Tekalp, “Controlling P2P-CDN live streaming ser-
vices at SDN-enabled multi-access edge datacenters,” IEEE Transactions
on Multimedia, vol. 23, pp. 3805-3816, 2021.

Fraunhofer HHI, “H.264 ultra low latency video codec.”
https://www.hhi.fraunhofer.de/en/departments/vca/technologies-and-
solutions/h264-avc/h264-ultra-low-latency-video-codec.html. Accessed
May 6, 2022.

“Appear announces support for ultra-low latency hevc encoding
on x platform.” https://www.appear.net/ultra-low-latency-hevc-encoding-
on-the-x-platform/, 2021. Accessed May 6, 2022.

“Introducing the world’s first 35ms latency mobile video transmis-
sion encoder/transmitter for teleoperation, 5G and other applica-
tions.” https://solitonsys.com/products/advanced-teleoperation/ultra-low-
latency-h-265-solution/, 2022. Accessed May 6, 2022.

A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal
speed and accuracy of object detection,” arXiv preprint:2004.10934,
2020.

F. Guo, Y. Qian, and Y. Shi, “Real-time railroad track components
inspection based on the improved YOLOv4 framework,” Automation
in Construction, vol. 125, p. 103596, 2021.

A. A. Shaghouri, R. Alkhatib, and S. Berjaoui, “Real-time pothole
detection using deep learning,” arXiv preprint:2107.06356, 2021.

H. Liu, K. Fan, Q. Ouyang, and N. Li, “Real-time small drones detection
based on pruned YOLOV4,” Sensors, vol. 21, no. 10, 2021.

E. Jeong, J. Kim, S. Tan, J. Lee, and S. Ha, “Deep learning inference
parallelization on heterogeneous processors with tensorrt,” IEEE Em-
bedded Systems Letters, vol. 14, no. 1, pp. 15-18, 2022.

X. Ma, K. Ji, B. Xiong, L. Zhang, S. Feng, and G. Kuang, “Light-
YOLOv4: An edge-device oriented target detection method for remote
sensing images,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 14, pp. 10808-10820, 2021.
K. Roszyk, M. R. Nowicki, and P. Skrzypczynski, “Adopting the
YOLOV4 architecture for low-latency multispectral pedestrian detection
in autonomous driving,” Sensors, vol. 22, no. 3, 2022.

C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-YOLOv4:
Scaling cross stage partial network,” in Proc. IEEE/CVF CVPR, 2021.
NVIDIA, “NVIDIA TensorRT, an SDK for high-performance deep
learning inference.” https://developer.nvidia.com/tensorrt. Accessed May
5, 2022.

OpenVINO, “Computer vision annotation tool (CVAT).”
https://github.com/openvinotoolkit/cvat. Accessed May 5, 2022.
COCO, “COCO: Common objects in context - evaluate.”
https://cocodataset.org/#detection-eval. Accessed May 6, 2022.
J. Redmon, “Darknet: Open source neural networks
http://pjreddie.com/darknet/, 2013-2016.

T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,
P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollar, “Microsoft COCO:
Common objects in context,” arXiv preprint:1405.0312, 2014.

K. Yang, J. Yau, L. Fei-Fei, J. Deng, and O. Russakovsky, “A study of
face obfuscation in imagenet,” arXiv preprint:2103.06191, 2021.

H. Hukkelas, R. Mester, and F. Lindseth, “Deepprivacy: A generative
adversarial network for face anonymization,” arXiv preprint:1909.04538,
2019.

COSMOS, “COSMOS testbed cameras.” https://wiki.cosmos-
lab.org/wiki/Hardware/CamerasCameras. Accessed August 7, 2022.

J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte,
“SwinIR: Image restoration using swin transformer,” in Proc. IEEE/CVF
ICCV, 2021.

in C”

