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Abstract— The urgent need for the decarbonization of power
girds has accelerated the integration of renewable energy.
Concurrently the increasing distributed energy resources (DER)
and advanced metering infrastructures (AMI) have transformed
the power grids into a more sophisticated cyber-physical system
with numerous communication devices. While these transitions
provide economic and environmental value, they also impose
increased risk of cyber attacks and operational challenges. This
paper investigates the vulnerability of the power grids with high
renewable penetration against an intraday false data injection
(FDI) attack on DER dispatch signals and proposes a kernel
support vector regression (SVR) based detection model as a
countermeasure. The intraday FDI attack scenario and the
detection model are demonstrated in a numerical experiment
using the HCE 187-bus test system.

I. INTRODUCTION

Along with the rapid deployment of distributed energy
resources (DERs), power system operation heavily relies
on information communication technologies (ICT) as shown
in Fig. 1 [1]. DERs such as energy storage and small-
scale generators receive dispatch signals from the energy
management system (EMS) and consumer-side resources
such as electric vehicles and demand response also contribute
to the increase in the number of ICT devices involved in
power grid operations. While the DERs generally provide
economic benefits to the electricity suppliers and consumers,
the power grid is more exposed to cyber attacks through
the ICT devices. For example, in 2015, a coordinated cyber
attack against the ICT network and devices in the distribution
grid caused blackouts in three different regions in Ukraine
for more than seven hours [2].

Meanwhile, renewable integration and decarbonization of
the power grid have significantly increased the system’s
operational difficulties. The intermittent nature of clean, but
weather-dependent energy resources such as wind turbine
and photovoltaic (PV) generators increase the need in ramp-
ing resources to handle the variability and system reserves
to address the subsequent uncertainty. At the same time,
the profitability of conventional flexibility resources such as
coal and gas power plants has been aggravated, making it
more challenging to secure an adequate amount of balancing
resources [3]. In practice, California ISO which is known
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Fig. 1. Various DERs and connecting communication links to the
EMS. Potential intraday FDI attacks targeting the communication
links and detection algorithm for EMS are also illustrated.

for its aggressive PV integration is facing the so-called duck
curve phenomenon which refers to the shape of the net load
profile with a high solar penetration including a rapid ramp-
up due to the reduction in solar generation around sunset. The
maximum three-hour ramping requirement was predicted to
be 13GW/3hr for the year 2020 in 2013, but the actual
value turned out to be 17GW/3hr [4]. This trend is currently
observed among the renewable pioneers such as power grids
in California and Texas, and will accelerate along with the
installation of more PV generation. The steep net load ramp-
up requires the power grid to operate with small system
reliability and resilience margins and increases the system
vulnerability to unexpected events such as cyber attacks.

A. Related work

A range of cyber attacks in power grids have been
investigated in the literature [5]-[16]. A denial of service
(DoS) attack that renders the entire communication network
in the grid unavailable by injecting meaningless packets
was presented in [5]-[7]. A replay attack which records the
reading of sensors and repeats these historical values was
studied in [8]-[11]. The most extensively examined type of
attack is a FDI attack [14], [15], [17]. FDI attacks change
the system state by injecting falsified data into the communi-
cation devices. The aforementioned example in Ukraine falls
into this category. Interested readers are referred to review
papers [12], [13] for general cyber attacks in power grids.
We narrow our attention to FDI attacks in this paper.

FDI attacks (in power grids) can be classified by the
target functionality. Rahman et al. [14] studied FDI attacks
against the state estimation which can be critical as incorrect
situational awareness causes a malfunction in reliability
applications such as contingency analysis. Isozaki et al. [15]



inspected FDI attacks on voltage regulation control causing
irregular tap changing by manipulating load measurements
and Choeum et al. [18] demonstrated a similar FDI attacks on
Volt/VAR control which deteriorate the power quality. Also,
Khanna et al. [17] investigated FDI attacks on optimal power
flow by falsifying load measurements so that the resulting
dispatch is not N-1 security compliant. However, to the best
of our knowledge, there is no existing work that analyzes the
FDI attacks associated with the DER dispatch signals.

As diverse as the type of FDI attacks are, proposed
detection algorithms are equally diverse [19], [20]. Detec-
tion methods can be broadly divided into model-based and
model-free, where model-based methods use power system
state estimation, exploiting network information and physical
system knowledge (e.g., grid topology, line impedances,
etc.) to detect anomalies in the observation [21], [22]. In
contrast, model-free approaches exploit recent advances in
machine learning techniques such as classification and clus-
tering [23]. There are, however, limited detection approaches
capable of capturing temporal characteristics. A short-term
state forecasting model in [24] takes temporal correlation
among different nodal states into account to detect FDI
attacks and Karimipour et al. [25] presented a dynamic state
estimation method accounting for multiple time frames using
Kalman filtering. It is noteworthy that none of the existing
work has focused on the counter measurements and system
vulnerability assessment for intraday FDI attacks.

SVR has gained popularity for time series forecasting in
different domains. Thissen er al. [26] suggested that the
SVR can model nonlinear relations and generate time series
predictions. Salcedo-Sanz et al. [27] showed how SVR can
be used for wind speed prediction, and He et al. [28] applied
SVR to electricity load prediction. In addition, Feng et al.
[29] utilized a multiple kernel SVR to capture both local and
global information and applied to the traffic flow prediction.
Building on these applications, we aim to exploit SVR for
considering multi-temporal correlation in the system status
and dispatch signals and identifying time-series FDI attacks.

B. Contribution

The contributions of this paper are two-fold. First, this
paper reveals the vulnerability of the low-carbon power
systems against the intraday FDI attacks by developing an
attacker model that is composed of two optimization models:
dispatch prediction model and dispatch falsification model.
Based on the historical values and the collected knowledge of
the target power grid, the dispatch prediction model mimics
the functionality of the EMS and predicts the dispatch signals
for DERs. Once the dispatch signal prediction is made, the
dispatch falsification model solves an optimization problem
to determine how to falsify the dispatch signals between
DERs and EMS so that the accumulated deviations in DER
outputs exceed the system security margin and cause the
system power shortage. Second, this paper proposes a kernel
SVR based detection model to enhance the reliability of the
power grid against cyber attacks. The kernel SVR takes the
input of monitored data comprised of multi-interval dispatch
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Fig. 3. Dispatch signal flow of (a) normal operation and (b)
operation under intraday FDI attack on generation dispatch.

signals and the corresponding network status (nodal voltage
magnitudes and phase angles) and predicts the system margin
of the time of interest (e.g., two hours ahead). If the predicted
margin drops below the threshold, the detection model noti-
fies the system operator. To increase the performance of the
kernel SVR, the training data is normalized by feature and
transformed into a feature space using a kernel trick.

II. INTRADAY FDI ATTACK

This section describes a gradually pervasive FDI attack
carried out during the evening net demand ramping-up peri-
ods. The attacker manipulates the dispatch signals from the
EMS so that the power output of the various DERs (e.g., dis-
tributed generator, energy storage, demand response) deviates
from the desired output. Once the accumulated deviation in
the power output is larger than the system flexibility, then
the supply cannot follow the demand ramp-up which can
cause system-wide power outages and potentially cascading
failures. This attack can be critical as the net demand
continues to increase rapidly over the hours which makes
the recovery process from the outage more challenging.

A. Overview of intraday FDI attack

The model in the following subsections is generic to
intraday FDI attacks against any type of DERs that receive
dispatch signals from EMS, while Figs. 2-3 use the attack
on generation dispatch for illustrative purposes. Figure 2
illustrates the intraday FDI attack against the interactions
between the EMS and the energy resources. First the attacker
collects dispatch data and produces the falsification signal
(Agh,) for the target time window. The actual attack is
carried out by falsifying the dispatch going into the energy



resource (g},) and the monitoring signal (g},) into the EMS
simultaneously. By doing so, the monitoring signal will
appear the same from the EMS’ perspective as g, + gl
under the normal operation in Fig. 3(a) and the one under the
intraday FDI attack in Fig. 3(b), while the actual generation
is perturbed by Agl, from the original dispatch regardless
of presence of the governor adjustment. Other resources that
receive dispatch signals from EMS such as energy storage,
demand response can be exposed to the same type of attack.

B. Dispatch prediction model

To generate multi-interval falsifying dispatch signals, the
attacker needs to predict the original dispatch signals from
the EMS. This requires knowledge of the power grids such as
network topology and nodal electricity demands. The attack
model in this paper is assumed to have perfect knowledge of
necessary information (network topology, line impedances,
and thermal limits — see Table I), which can be considered
as the most precise attack scenario.! The type of information
needed for the attack model is summarized in Table 1.> The
dispatch prediction model mimics the power grid operation
and is formulated as the second-order cone problem:
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In the 2015 Ukraine case [2] the network information was obtained by
reconnaissance operations.

2While the reserve allocation for each balancing unit is marked as
unknown, the attack model requires the knowledge of the total reserve.

where EF = {§%, 4%, 7, 2™ e, DL, DU Gy, Gy > 0,
dPPet fP f € R}. Power grid is defined with lines I € £
and nodes n € N while time set is denoted as t € 7.
The objective function in (la) minimizes the total cost of
generation, load curtailment and reserve. Equations (1b)—(le)
are second-order-conic relaxation of the AC power flow
equations [30], where o(l) and r(l) denote the sending and
receiving buses of line [. Forward and backward line flow
limits are enforced in (1f) with line capacity Fj. Given
reserve requirement parameter K ™%°, the minimum system
reserve is set proportional to the total demand in (1g).
Ramping constraints of flexible generation units (i € Z©)
are imposed in (lh). The active and reactive power limits
of generators are enforced in (1i) and (1j). Equations (1k)
and (11) limit lower and upper bounds of nodal voltage mag-
nitudes and load curtailments respectively. Energy storage
operation is modeled in (1m)—(1o) where the charging and
discharging decisions are denoted as f)gtl and f)‘,ﬁs. The inter-
temporal relationship of the state of charge éj; is defined in
(1m) with charging and discharging efficiency parameters,
Nt and R4S, The lower and upper bounds for the charging
and discharging power are in (lo).

C. Dispatch falsification model

Once the prediction of the dispatch is made, the attacker
can generate falsification signals. The falsification targets are
constrained by the number and type of access points. For
simplicity, it is assumed that the FDI attack would be carried
out using only a single type of DERs (e.g., generator, storage
or demand in Fig. 2). Then the dispatch falsification model
is formulated with generic dispatch notation x, for unit &
and attack time ¢ € 7* as follows:
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Given the prediction of the target dispatch (e.g., Zx: == g5,
for generator, Z; == ﬁz};/ 45 for storage, and Zy; = dpeurt
for load curtailment), the attacker determines the falsification
signal (e.g., Az, = Agl,). The objective function in (2a)
minimizes the sum of the squared size of the attack and
the temporal smoothness regularization term® with penalty
parameter p. Constraint (2b) sets the impact of the attack
achieves the target deviation with user-defined parameter
K} for each time interval and (2c) ensures the accumulated
deviation in the dispatch during the attacking windows ¢ €
T? exceeds the system reserve. The lower and upper bounds
for individual falsification signals are given in (2d) and (2e)

3The regularization term in (2a) can be extended to account for other
dimensions such as geographical locations (i.e., similar deviations in nearby
dispatch signals).



TABLE I. ASSUMPTIONS FOR THE ATTACK AND DETECTION MODELS

Name ‘ Attack Model Detection Model

Network information:
topology (N, £) v v
line impedance (R;, X;) v v
line thermal limit (F}) v v

Dispatch signals:

generation output (g},) - P&A

load curtailment (dS3*) - P& A

storage dispatch @Z}t‘/ dls) - P& A

reserve (7;¢) - P& A
Measurements:

nodal demand (D?,) P P& A

nodal voltage (vnt, Ont) - v

* P: prediction, A: actual, v: assumed to be known, —: unknown

where €* is an user-defined parameter to confine the attack
size and the original dispatch bounds are X, and X:.

III. FDI ATTACK DETECTION WITH KERNEL SVR

To detect the intraday FDI attack carried out over several
hours, the detection model should be able to capture the
temporal changes in dispatch signals as well as the current
values. To do so, the detection model requires access to
the dispatch signals and network status for the monitoring
windows 7™ (in the sequel we shall use a 6-hour window)
and the system margin at the time of interest 7P (in our
examples, the time of interest is set to 2 hours after the
monitoring window closes) as summarized in Table I.

A. Kernel Support Vector Regression

Kernel SVR is a generalization of Kernel support vec-
tor machine for real-value function estimation, commonly
equipped with e-insensitive loss function (sometimes referred
to as soft-margin loss function) [31]. A kernel function maps
the original input data into feature space (i.e., 2° — ¢(z*))
through the use of inner products, which is compatible for
the SVR model fitting. The common selection of a kernel
is Gaussian radial basis kernel function (RBF) in (3a) and
polynomial kernel of degree d in (3b) (See [32] for details):
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Given input data  with user-defined parameter C' and
feature map ¢(-), the Kernel SVR for predicting output: y; €
R can be modeled as in (4):

l
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The objective function in (4a) minimizes the sum of the norm
of w and the loss terms, where w 'z + b = 0 is a decision
boundary and the size of margin is HT2H (i.e., the margin is
maximized). Points within an e distance of the support vector
do not contribute to the cost.
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Fig. 4. Training and testing process of the kernel SVR detection
model with the normal operation data and falsified dispatch data.

B. Kernel SVR detection model

Figure 4 shows the process of training the kernel SVR for
detecting the intraday FDI attacks. To train the SVR model in
(4), we first generate normal operation data with supply and
demand side uncertainties and falsified operation data. The
supply and demand uncertainties are modeled as a random
variable drawn from a Gaussian distribution. In practice,
historical data can be used for generating a probability
distribution of the supply and demand uncertainties. The
power grid measurement data (voltage magnitudes and phase
angles) are obtained by solving the power flow equations
with fixed power injections based on the supply and demand
data. Synthetic falsified operation data can be generated in
the same way, while the dispatch signals are fixed as the
falsified values from the dispatch falsification model.

Once the training data is prepared, the input vector
for each observation % is constructed which is comprised of
prediction (%) and actual (-) values of energy resources over
the user-defined monitoring time windows (¢t € 7™) and the
system status (voltage magnitudes and phase angles):
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where d = (2|Z] + 2|N| + 2|K| + 2|N®])|T™|. Then the
corresponding output (y;) of the kernel SVR is set as the
system operation margin defined as the minimum of the
remaining up-ward and down-ward reserves at the time of
interest t = TP (e.g., 2 hours from now). Formally, the
margin at time ¢ is:

min{r,? — Z(x” — &), TR — Z(i'zt —xit)}. (Sb)

7 A

In (5b), the generic notation z;; is used to represent all
flexible resources such as generators (g.,), storage (pgt]/ dls),
load curtailment (dS4™") and the system margin is defined as
the total sum of remaining flexibility in all units.

To increase and validate the model performance, additional

steps are added in the kernel SVR. First, the input data is
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Fig. 5. HCE 187-bus test system where nodal voltage levels are
marked color-coded. Two intraday FDI attack scenarios — generation
dispatch (scenario 1) and load curtailment (scenario 2).

normalized by each feature so that they can be accounted
for equally. Once the fitting of the kernel SVR is completed,
then the performance is validated with the testing data.

IV. NUMERICAL EXPERIMENTS

We use the 187-bus test system shown in Fig. 5 with
daily generation and load profiles based on real-life data
provided by Holy Cross Energy, a power utility in Colorado.
The PV generation has been scaled up by a factor of six
so that the overall solar penetration is around 15% of total
generation, which is similar to the current practice in the
state of California (15.43% of the total generation was from
solar in 2020) [33]. Demand forecast error is assumed to
follow a Gaussian distribution with zero mean and 2% of
nominal value as standard deviation. For the attack model in
(2), the generation dispatch (Scenario 1) and load curtailment
(Scenario 2) are assumed to be falsified respectively. For
the detection model in (4), the monitoring window (7™)
and the time of interest (7P"%) are set as six hours and
two hours from the time of prediction, i.e., 7™ = [Tpred —
8h, TPred—2h]. The RBF kernel is used for feature map ¢(-).
All optimization problems are modeled using Julia/JuMP
[34], and solved by Ipopt Solver [35]. The kernel SVR is
implemented using the scikit-learn package [36].

A. Scenario 1: intraday FDI attack on generation dispatch

1) Dispatch prediction: Given solar generation and de-
mand forecasts from a cloudy day, the attacker solves the
prediction model in (1) and the resulting generation profile
is shown in Fig. 6(a). The solar generation (red line) has
two valleys around 12:00 and 15:00 (due to the weather
conditions such as intermittent clouds), which are offset
mainly by the generators (blue line). In order to compensate
for the change in solar generation output around sunrise and
sunset, controllable resources such as gas generation, energy
storage, and load curtailment are utilized. Additionally, the
system reserve is allocated to address the system uncertainty.
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Fig. 6. Tllustration of Scenario 1: (a) dispatch prediction, (b)
generation dispatch falsification, (c) generation profile under the
intraday FDI attack, (d) system margin prediction.



2) Falsification of generation dispatch: The attacker gen-
erates falsification signals by solving (2) with the predicted
dispatch. Fig. 6(b)—(c) show a scenario of the intraday FDI
attacks on generation dispatch g,. In Fig. 6(b), the original
dispatch is planned to provide approximately 10MW/3hr
of ramping-up flexibility around sunset (16:00-19:00). The
attack signal overrides the original values (solid line) and
instead injects reduced generation dispatch (dashed line). As
a result, compared to Fig. 6(a), the total system generation
(dashed black line) in Fig. 6(c) decreases due to this FDI
attack, and the total amount of supply-demand imbalance
exceeds the system flexibility (shaded area) which can cause
a system-wide power outage.

3) Detecting the FDI attack with kernel SVR: Fig. 6(d)
shows how the system margin changes over time when the
FDI attack presented in Fig. 6(b) is carried out. While the
actual system margin (orange line) drops as a result of the
attack and is eventually exhausted at 14:30, the EMS monitor
(yellow line) shows a steady margin throughout the entire
attack. This is because the attacker injects the falsified signal
into the up-link to the EMS monitor as well as the down-
link to the DERs. The proposed detection model provides
the estimation on the system margin two hours ahead of
the time of interest. For example, in Fig. 6(d), the system
margin prediction (blue dashed line) plotted for 13:00 is
made at 11:00 based on the monitoring window 5:00-11:00
and the prediction gets updated and shifted as time flows (the
three gray blocks in the bottom of Fig. 6(d) illustrate how
the monitoring window and time of interests change over
time). Thus, the grid operator can monitor this prediction
and take preventive measures in a timely manner once the
margin drops below the reliability threshold, i.e., at 13:00,
the operator can know that margin is expected to drop below
IMW in an hour. Note that the monitoring and actual margin
values are not recorded after the power outage at 14:30 and
therefore the prediction is also available only until 16:30.

B. Scenario 2: intraday FDI attack on load curtailments

1) Dispatch prediction: Fig. 7(a) shows the generation
and demand profile of a sunny day predicted by an attacker.
Unlike Scenario 1, the solar generation shows a smooth
ramp-up during the sunrise and ramp-down during the sunset,
and the generation output covering the variability from solar
is also expected to have a smooth shape without a valley.

2) Falsification of load curtailment: In this scenario, we
assume the control center at sub-b in Fig. 5 is hacked
and the downstream load curtailment signals (dS%*%) are
falsified. In contrast to the falsification of generation dispatch
signals in Fig. 6(b), the FDI attack on load curtailment
requires manipulation on a greater number of signals that are
geographically related (nearby electricity loads have similar
patterns). To make the falsification natural, the attacker adds
a geographical regularization in addition to the temporal
regularization term in the objective function and solves the
attack model in (2) to design an attack. Thus, the falsification
signals (AdS3™) on nearby nodes (e.g., b11 and b12, b51 and
b52) in Fig. 7(b) have a similar shape over time, which makes
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(a) Nlustration of generation dispatch and allocated reserve (5% of
the system load) on a sunny day. The red and blue boxes represent
the net-load morning ramp down and evening ramp up periods.
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(c) Daily generation profile and allocated reserve (5% of the system
load) under the intraday FDI attack on load curtailments.
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(d) System margin value comparison under the intraday FDI attack
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Fig. 7. Nlustration of Scenario 2: (a) dispatch prediction, (b) load
curtailment falsification, (c) generation profile under the intraday
FDI attack, (d) system margin prediction.



the attack hard to be detected. As a result of the attack, as
shown in Fig. 7(c), the total system generation (dashed-line)
decreases gradually and the total amount of supply-demand
imbalance exceeds the system flexibility (shaded area).

3) Detecting the FDI attack with the kernel SVR: Similar
to Scenario 1, the monitored system margin (yellow line)
in Fig. 7(d) looks normal throughout all intervals. However,
the actual margin (red line) starts to decrease at 13:00 and is
fully exhausted at 15:20. The proposed kernel SVR detection
model predicts the drop would begin at 14:00 and the margin
will be below IMW at 15:30. In other words, the grid
operator will notice the change at 12:00 (two hours ahead
of 14:00) and the preventive measure will be taken at 13:30
(two hours ahead of 15:30) if the security threshold is IMW.

V. CONCLUSIONS AND FUTURE WORK

This paper analyzed the vulnerability of power grids with
high PV penetration against an intraday FDI attack that
falsifies DER dispatch and monitoring signals. Based upon
the dispatch prediction and dispatch falsification models, we
illustrated how gradual manipulation of DER outputs can
cause a power imbalance which exceeds the system reliability
margin. To enhance the power grid reliability against the
attack scenario, we also proposed a detection model utilizing
a kernel SVR which allows a power grid operator to predict
the reduction in the system margin ahead of time. The
numerical experiments demonstrate the attack scenarios and
the performance of the detection model on the HCE test
system, which is based on real-world data.

There are several directions for future works. First, we
plan to relax the perfect knowledge assumption on the grid
conditions. In practice, such information is available only in
limited locations and we will investigate how this affects the
detection model. We also plan to evaluate the performance
of the kernel SVR detection model against other detection
methods and carry out the comparative analyses.
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