



# Outdoor-to-Indoor 28 GHz Wireless Measurements in Manhattan: Path Loss, Location Impacts, and 90% Coverage

Manav Kohli<sup>1</sup>, Abhishek Adhikari<sup>1</sup>, Gulnur Avci<sup>1</sup>, Sienna Brent<sup>1</sup>, Jared Moser<sup>2</sup>, Sabbir Hossain<sup>3</sup>, Aditya Dash<sup>1</sup>, Igor Kadota<sup>1</sup>, Rodolfo Feick<sup>4</sup>, Dmitry Chizhik<sup>5</sup>, Jinfeng Du<sup>5</sup>, Reinaldo Valenzuela<sup>5</sup>, and Gil Zussman<sup>1</sup>

<sup>1</sup>Columbia University; <sup>2</sup>Stuyvesant High School; <sup>3</sup>The City College of New York; <sup>4</sup>Universidad Tecnica Federico Santa Maria; <sup>5</sup>Nokia Bell Labs

ACM MobiHoc'22

October 20, 2022







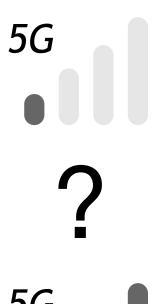




#### Introduction



As humans, we spend up to 80-90% of our time indoors, exacerbated in


recent years by the COVID pandemic

mmWave effective for outdoors use cases

- Cellular users, V2X, backhaul etc.
- But what about for indoors users?
- What influences mmWave indoors coverage?
- Can the gold-standard gigabit data rates be achieved by indoors users?







<sup>•</sup> A. Ferreira and N. Barros. 2022. COVID-19 and Lockdown: The Potential Impact of Residential Indoor Air Quality on the Health of Teleworkers. In *Int J Environ Res Public Health* 

#### **Outline**



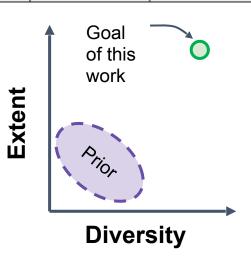
- Research Questions and Methodology
- The Outdoor-to-Indoor Measurement Campaign
- Path Gain and Link Rates in Different Scenarios
- Case Study of a Public Middle School + Dataset
- Closing Remarks

## Research Questions and Methodology



Singular overarching research question:

Is outdoor-to-indoor (Otl) coverage feasible in mmWave networks?

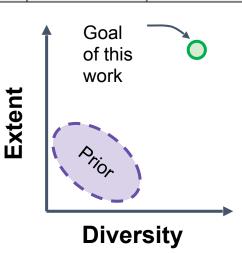

- Feasible: data rates in excess of 1 Gb/s achieved by 90% of users
- Effective way to answer this: measure, measure, measure...
- Measurements must be diverse and extensive
  - Measuring few sites leads to bias
  - Taking only a handful of measurements provides anecdotes
- Data diversity and volume ———— statistically relevant conclusions

### Related Work



| Ref.           | Type          | Frequency   | Environment      | Tx Design             | Rx Design                 | Bandwidth  | # Tx-Rx Links |
|----------------|---------------|-------------|------------------|-----------------------|---------------------------|------------|---------------|
| Chizhik 2020   | ItI           | 28 GHz      | Urban            | Stationary Horn       | Rotating Horn             | Narrowband | >1,500        |
| Raghavan 2018  | ItI, OtO      | 29 & 60 GHz | Urban & Suburban | Rotating Horn         | Rotating Horn             | 200 MHz    | 785           |
| K. Du 2021     | ItI, OtO, OtI | 28 GHz      | Suburban         | Stationary Horn       | Stationary Horn           | 2 GHz      | 153           |
| Jun 2020       | ItI, OtI      | 60 GHz      | Urban            | 8x1 MIMO Array        | 8x2 MIMO Array            | 4 GHz      | 150           |
| Zhao 2013      | ItI, OtI      | 28 GHz      | Urban            | Gimbal-mounted Horn   | Gimbal-mounted Horn       | 400 Mcps   | 18            |
| Aslam 2020     | OtO           | 60 GHz      | Urban            | 36x8 Phased Array     | 36x8 Phased Array         | 2.16 GHz   | 15            |
| J. Du 2020     | OtO           | 28 GHz      | Suburban         | Stationary Horn       | Rotating Horn             | Narrowband | >2,000        |
| Chen 2019      | OtO           | 28 GHz      | Urban            | Omnidirectional       | Rotating Horn             | Narrowband | >1,500        |
| Diakhate 2017  | OtI           | 60 GHz      | Urban            | Stationary Horn       | Stationary Horn           | 125 MHz    | 76            |
| Ntetsikas 2022 | OtI           | 60 GHz      | Suburban         | Omnidirectional       | Rotating Horn             | Narrowband | 160           |
| Bas 2018       | OtI           | 28 GHz      | Urban            | 8x2 Phased Array      | 8x2 Phased Array          | 400 MHz    | 29            |
| Larsson 2014   | OtI           | 28 GHz      | Suburban         | Stationary Slot Array | Stationary Parabolic Dish | 50 MHz     | 43            |
| This work      | OtI           | 28 GHz      | Urban            | Omnidirectional       | Rotating Horn             | Narrowband | >2,000        |

Prior Otl measurements lack extent and diversity




#### Related Work



| Ref.           | Type          | Frequency   | Environment      | Tx Design             | Rx Design                 | Bandwidth  | # Tx-Rx Links |
|----------------|---------------|-------------|------------------|-----------------------|---------------------------|------------|---------------|
| Chizhik 2020   | ItI           | 28 GHz      | Urban            | Stationary Horn       | Rotating Horn             | Narrowband | >1,500        |
| Raghavan 2018  | ItI, OtO      | 29 & 60 GHz | Urban & Suburban | Rotating Horn         | Rotating Horn             | 200 MHz    | 785           |
| K. Du 2021     | ItI, OtO, OtI | 28 GHz      | Suburban         | Stationary Horn       | Stationary Horn           | 2 GHz      | 153           |
| Jun 2020       | ItI, OtI      | 60 GHz      | Urban            | 8x1 MIMO Array        | 8x2 MIMO Array            | 4 GHz      | 150           |
| Zhao 2013      | ItI, OtI      | 28 GHz      | Urban            | Gimbal-mounted Horn   | Gimbal-mounted Horn       | 400 Mcps   | 18            |
| Aslam 2020     | OtO           | 60 GHz      | Urban            | 36x8 Phased Array     | 36x8 Phased Array         | 2.16 GHz   | 15            |
| J. Du 2020     | OtO           | 28 GHz      | Suburban         | Stationary Horn       | Rotating Horn             | Narrowband | >2,000        |
| Chen 2019      | OtO           | 28 GHz      | Urban            | Omnidirectional       | Rotating Horn             | Narrowband | >1,500        |
| Diakhate 2017  | OtI           | 60 GHz      | Urban            | Stationary Horn       | Stationary Horn           | 125 MHz    | 76            |
| Ntetsikas 2022 | OtI           | 60 GHz      | Suburban         | Omnidirectional       | Rotating Horn             | Narrowband | 160           |
| Bas 2018       | OtI           | 28 GHz      | Urban            | 8x2 Phased Array      | 8x2 Phased Array          | 400 MHz    | 29            |
| Larsson 2014   | OtI           | 28 GHz      | Suburban         | Stationary Slot Array | Stationary Parabolic Dish | 50 MHz     | 43            |
| This work      | OtI           | 28 GHz      | Urban            | Omnidirectional       | Rotating Horn             | Narrowband | >2,000        |

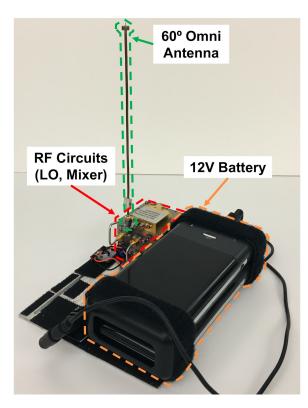
- Prior Otl measurements lack extent and diversity
- Leverage similar methodology from our past work with the desired extent and diversity
  - Want to repeat for Otl
  - Same measurement equipment used!



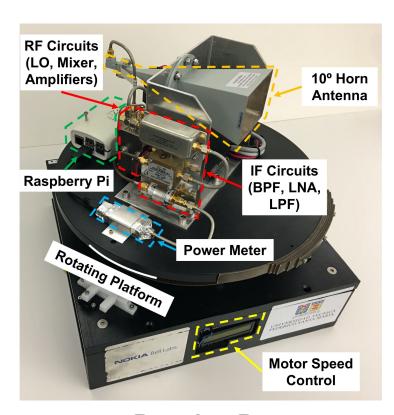
#### **Outline**



- Research Questions and Methodology
- The Outdoor-to-Indoor Measurement Campaign
- Path Gain and Link Rates in Different Scenarios
- Case Study of a Public Middle School + Dataset
- Closing Remarks


## Measurement Equipment




- 28 GHz narrowband channel sounder with rotating Rx
- Rx spins at 120 RPM
- 740 power readings per second
- 20s measurements





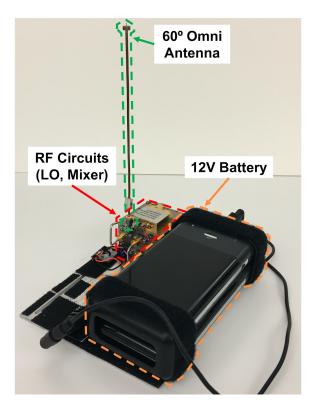


**Narrowband Tx** 

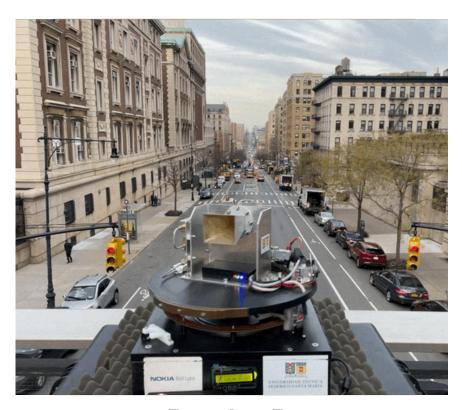


**Rotating Rx** 

• J. Du, D. Chizhik, R. Feick, M. Rodriguez, G. Castro, and R. A. Valenzuela. 2020. Suburban Fixed Wireless Access Channel Measurements and Models at 28 GHz for 90% Outdoor Coverage. In *IEEE Trans. Antennas Propag*.


## Measurement Equipment




- 28 GHz narrowband channel sounder with rotating Rx
- Rx spins at 120 RPM
- 740 power readings per second
- 20s measurements







**Narrowband Tx** 

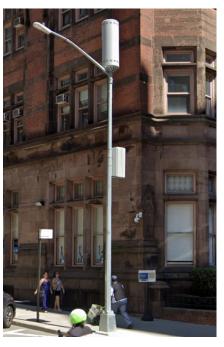


**Rotating Rx** 

• J. Du, D. Chizhik, R. Feick, M. Rodriguez, G. Castro, and R. A. Valenzuela. 2020. Suburban Fixed Wireless Access Channel Measurements and Models at 28 GHz for 90% Outdoor Coverage. In *IEEE Trans. Antennas Propag*.

## Measurement Setup



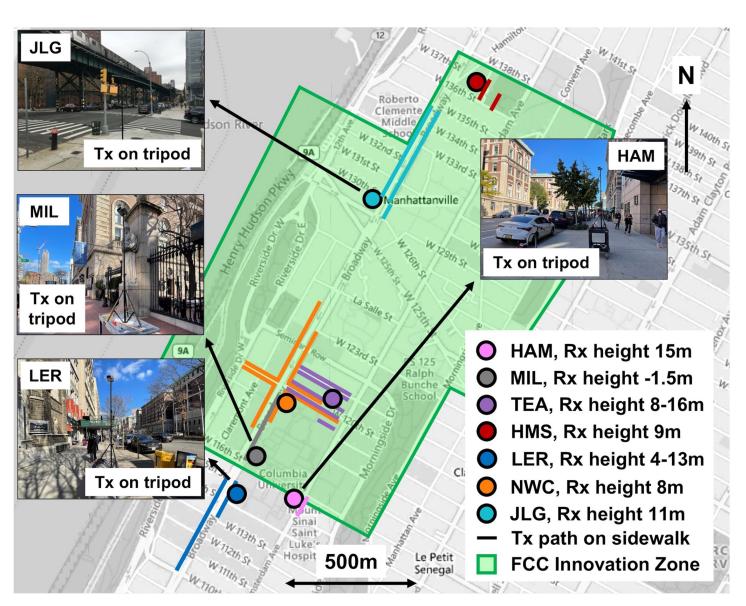

- Place rotating Rx indoors, 1m away from a window (emulating UE)
- Mount Tx on a tripod and cart: dipole is 11 ft off ground (emulating BS)
- Move the Tx on street sidewalks overlooked by Rx in fixed increments







Tx deployed outdoors




**5G Lightpole gNB** 

## Measurement Campaign



- Measure at 7 different buildings around West Harlem, NYC
- Area within the COSMOS FCC Innovation Zone
- Buildings range in construction date from 1903 to 2017
- Varied construction materials
  - Brick + concrete
  - Glass + metal
- Different types of window glass
- >2,000 Tx-Rx links measured
- >29 million power readings
- 35 Otl scenarios studied



## Measurement Campaign



- >2,000 Tx-Rx links
- >29 million power readings
- 35 Otl scenarios (building/sidewalk combo)

| Name          | Color  | Group | Range (m) | Step (m) | # Links | Slope (dB) | Intercept (dB) | RMS (dB) | Median $G_{az}$ (dBi) |
|---------------|--------|-------|-----------|----------|---------|------------|----------------|----------|-----------------------|
| HAM-S-E       | Pink   | HAM   | 61        | 1        | 62      | -6.61      | -23.7          | 3.5      | 11.1                  |
| MIL-N-E       | Gray   | MIL   | 155       | 2.5      | 76      | -3.53      | -59.1          | 2.8      | 11.0                  |
| TEA-S-N-1     | Purple | TEA   | 230       | 6/8      | 35      | -2.56      | -95.3          | 5.6      | 11.0                  |
| TEA-S-S-1     | Purple | TEA   | 228       | 4/8      | 45      | -3.49      | -75.1          | 4.8      | 10.9                  |
| TEA-S-S-2     | Purple | TEA   | 155       | 3        | 52      | -5.52      | -40.5          | 2.6      | 7.7                   |
| TEA-S-S-3     | Purple | TEA   | 232       | 3        | 77      | -5.13      | -36.1          | 3.3      | 8.8                   |
| TEA-S-Bal-1   | Purple | TEA   | 85        | 3        | 29      | -1.61      | -107.9         | 4.7      | 9.7                   |
| TEA-S-Bal-2   | Purple | TEA   | 85        | 3        | 29      | -0.69      | -111.3         | 4.2      | 7.8                   |
| TEA-S-Bal-3   | Purple | TEA   | 37        | 3        | 13      | -5.20      | -33.6.         | 4.3      | 10.0                  |
| TEA-N-N       | Purple | TEA   | 243       | 3        | 68      | -4.45      | -53.0          | 4.1      | 10.8                  |
| TEA-N-S       | Purple | TEA   | 243       | 3        | 81      | -4.80      | -41.0          | 4.1      | 10.1                  |
| HMS-Lot-307   | Maroon | HMS   | 62        | 1        | 63      | -3.22      | -60.4          | 1.6      | 10.4                  |
| HMS-Lot-317   | Maroon | HMS   | 62        | 1        | 63      | -3.48      | -52.0          | 3.4      | 11.5                  |
| HMS-Lot-321   | Maroon | HMS   | 62        | 1        | 63      | -4.12      | -44.1          | 3.4      | 11.8                  |
| HMS-Lot-323   | Maroon | HMS   | 62        | 1        | 63      | -4.10      | -47.2          | 2.5      | 9.9                   |
| HMS-Lot-325   | Maroon | HMS   | 62        | 3        | 22      | -3.40      | -54.8          | 2.5      | 10.8                  |
| HMS-Court-307 | Maroon | HMS   | 42        | 1        | 43      | -5.47      | -3.9           | 2.9      | 13.3                  |
| HMS-Court-317 | Maroon | HMS   | 39        | 1        | 40      | -6.48      | 11.2           | 3.2      | 12.0                  |
| HMS-Court-321 | Maroon | HMS   | 57        | 1        | 58      | -8.50      | 51.1           | 3.1      | 11.0                  |
| HMS-Court-323 | Maroon | HMS   | 57        | 1        | 58      | -8.13      | 43.6           | 1.6      | 9.8                   |
| HMS-Court-325 | Maroon | HMS   | 58        | 1        | 59      | -1.88      | -84.3          | 2.2      | 10.2                  |
| LER-S-W-5     | Blue   | LER   | 298       | 3        | 96      | -5.29      | -19.6          | 3.0      | 10.8                  |
| LER-S-W-2     | Blue   | LER   | 110       | 8        | 14      | -6.72      | -22.8          | 4.2      | 9.4                   |
| LER-S-E-2     | Blue   | LER   | 95        | 6        | 23      | -3.97      | -75.2          | 3.8      | 9.4                   |
| NWC-N-W       | Orange | NWC   | 197       | 3/6      | 65      | -3.03      | -76.9          | 4.7      | 12.8                  |
| NWC-N-E       | Orange | NWC   | 201       | 3        | 60      | -3.52      | -73.0          | 1.9      | 11.2                  |
| NWC-E-N       | Orange | NWC   | 131       | 3        | 44      | -4.83      | -48.7          | 2.9      | 11.1                  |
| NWC-E-S       | Orange | NWC   | 242       | 3        | 78      | -3.08      | -83.2          | 2.8      | 10.8                  |
| NWC-S-E       | Orange | NWC   | 105       | 1        | 106     | -3.30      | -86.7          | 4.9      | 9.8                   |
| NWC-S-W       | Orange | NWC   | 180       | 2/3/6    | 72      | -3.36      | -74.9          | 4.5      | 10.9                  |
| NWC-S-E       | Orange | NWC   | 153       | 3        | 46      | -4.36      | -55.4          | 4.2      | 12.1                  |
| NWC-W-N       | Orange | NWC   | 173       | 3        | 56      | -2.02      | -102.4         | 3.2      | 10.3                  |
| JLG-N-W       | Cyan   | JLG   | 291       | 3/6      | 75      | -2.94      | -72.5          | 2.5      | 10.8                  |
| JLG-N-E       | Cyan   | JLG   | 224       | 3        | 68      | -3.20      | -77.7          | 2.3      | 8.9                   |
| JLG-E-E       | Cyan   | JLG   | 49        | 3        | 17      | 11.61      | -355.6         | 2.9      | 13.1                  |





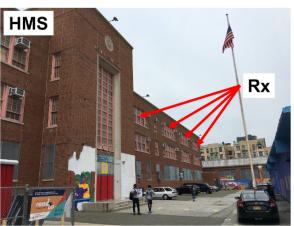


NWC: Northwest Corner Building (8 scenarios / 527 links)





LER: Lerner Hall (3 scenarios / 133 links)



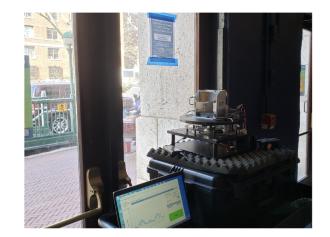





TEA: Teacher's College (9 scenarios / 435 links)






HMS: Hamilton Grange Middle School (10 scenarios / 532 links)

## Measurement Campaign











HAM: Hamilton Hall (1 scenario / 62 links)

MIL: Miller Theatre (1 scenario, 76 links)



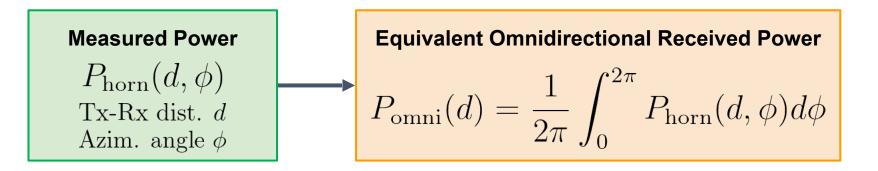


JLG: Jerome L. Greene (3 scenarios, 160 links)

#### **Outline**

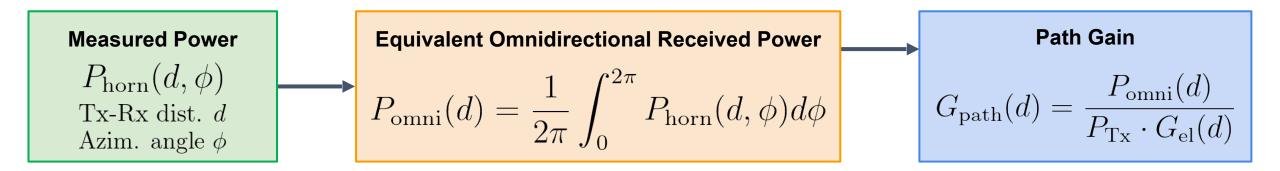


- Research Questions and Methodology
- The Outdoor-to-Indoor Measurement Campaign
- Path Gain and Link Rates in Different Scenarios
- Case Study of a Public Middle School + Dataset
- Closing Remarks



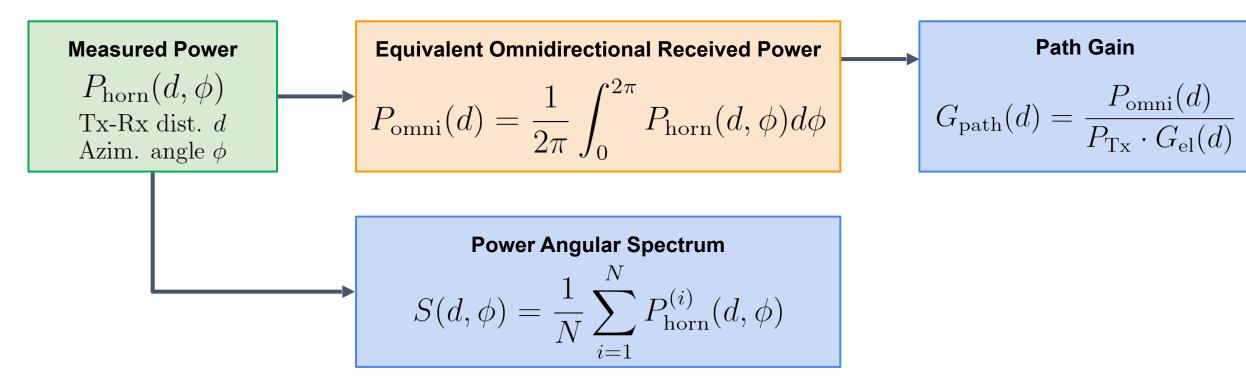

#### **Measured Power**

 $P_{\text{horn}}(d, \phi)$ Tx-Rx dist. dAzim. angle  $\phi$ 


• Sounder records the measured power at link distance d, azim. angle  $\varphi$ 

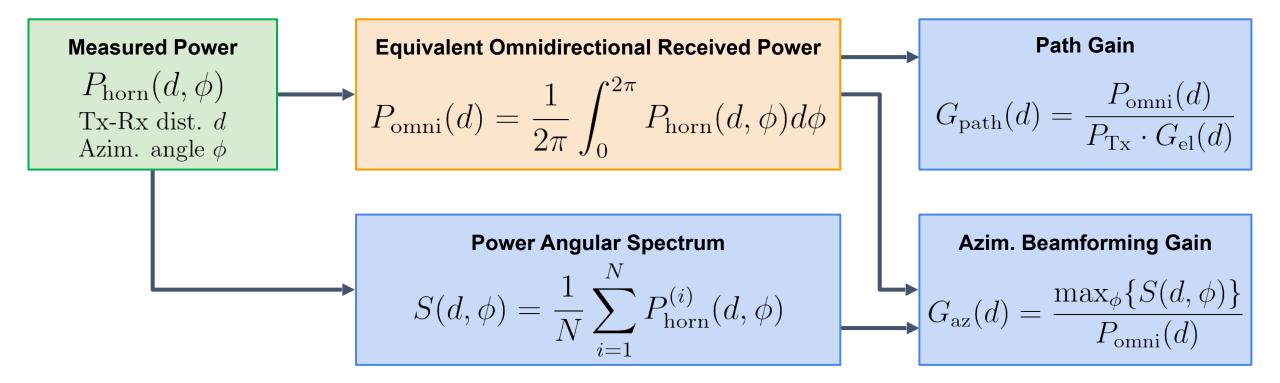





- Sounder records the measured power at link distance d, azim. angle  $\varphi$
- Compute the equivalent omnidirectional received power





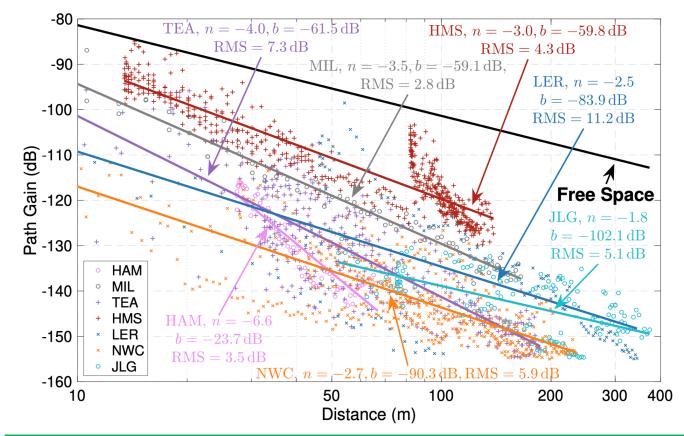

- Sounder records the measured power at link distance d, azim. angle  $\varphi$
- Compute the equivalent omnidirectional received power
- Compute the path gain





- Sounder records the measured power at link distance d, azim. angle  $\varphi$
- Compute the power angular spectrum






- Sounder records the measured power at link distance d, azim. angle  $\varphi$
- Compute the power angular spectrum
- Compute the azimuth beamforming gain

## Path Gain for Different Buildings



- Path gain plotted as a function of distance
- Best-fit exponential path gain model fitted to point cloud
- Very different models for all seven buildings measured
- Takeaway: Impossible to predict path loss from building exterior
- Note: newer buildings typically have lower path gain (JLG, NWC)



$$G_{\text{path}}(d) = b + n \cdot 10 \log_{10} d + \sigma \mathcal{N}(0, 1)$$

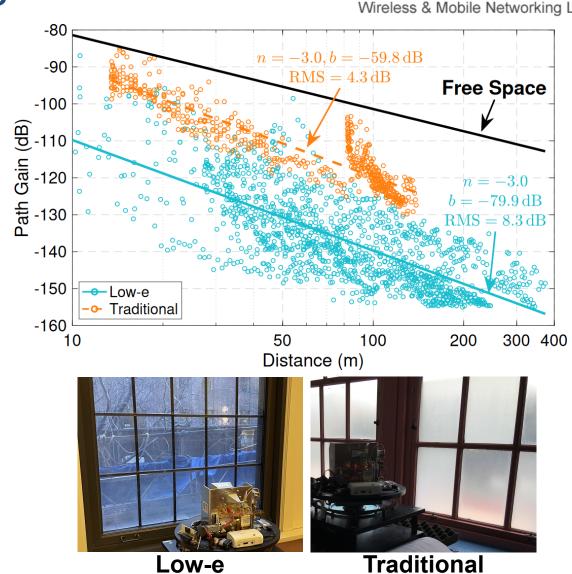
b = path gain at 1m (dB), n = slope of best-fit line,  $\sigma$  = RMS fitting error (dB)

## Path Gain for Different Buildings



- Path gain plotted as a function of distance
- Best-fit exponential path gain model fitted to point cloud
- Very different models for all seven buildings measured
- Takeaway: Impossible to predict path loss from building exterior
- Note: newer buildings typically have lower path gain (JLG, NWC)




$$G_{\text{path}}(d) = b + n \cdot 10 \log_{10} d + \sigma \mathcal{N}(0, 1)$$

b = path gain at 1m (dB), n = slope of best-fit line,  $\sigma$  = RMS fitting error (dB)

## Considering the Type of Glass

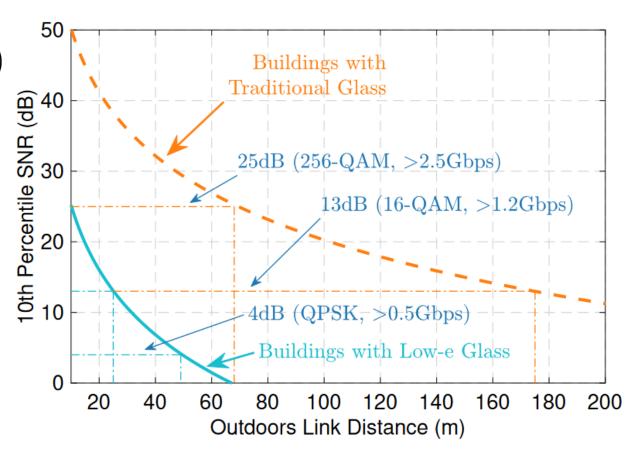
wim.net
Wireless & Mobile Networking Lab

- mmWave signal experiences in excess of 50 dB loss through walls
- Majority of signal will enter indoors space via the building windows
- Categorize buildings by glass type
  - Low-e: double glazing with coating
  - "Traditional": single glazed, plain
- Observe uniform 20 dB penalty for Low-e buildings at all link distances
- Worse Otl coverage for Low-e?



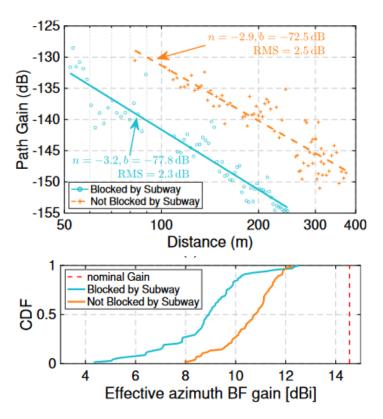
• C. Vargas, L. da Silva Mello, and C. R. Rodriguez. 2017. Measurements of Construction Materials Penetration Losses at Frequencies From 26.5 GHz to 40 GHz, in *Proc. IEEE PACRIM* 

## Glass-Dependent Link Rates




 Apply the best-fit exponential path gain models for two types of glass

$$G_{\text{path}}(d) = b + n \cdot 10 \log_{10} d + \sigma \mathcal{N}(0, 1)$$


- Compute 10<sup>th</sup> percentile signal-tonoise ratio, compute impaired Shannon capacity
- Traditional glass: 256QAM out to 68m, 16QAM to 175m (> 1Gb/s)
- Low-e glass: 16QAM out to 25m, QPSK out to 49m (< 1 Gb/s)</li>

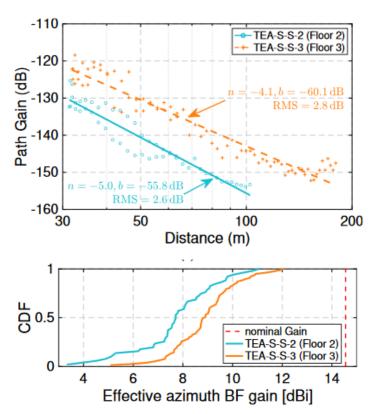
Bandwidth: 800 MHz, state-of-the-art system parameters (UE LNA, BS PA, UE Antenna Gain etc.)



## Locational Effects - Subway Track

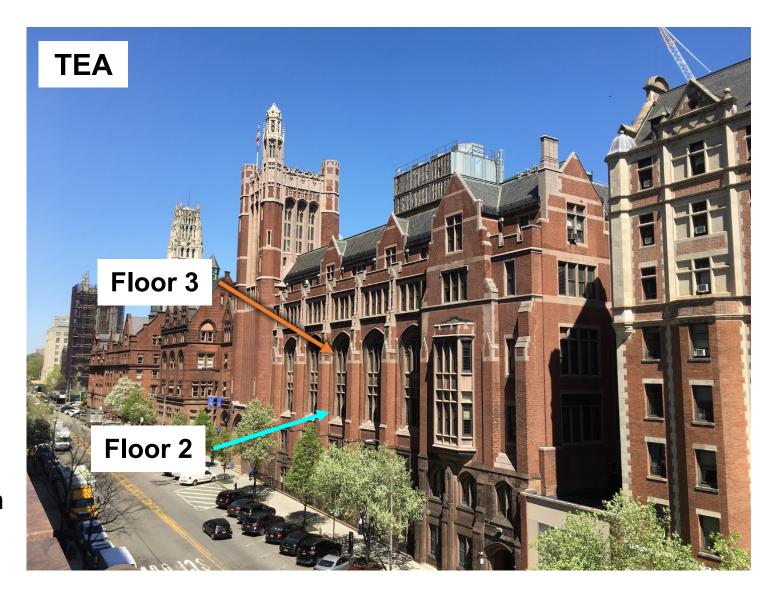





#### **Blockage by Subway Track**

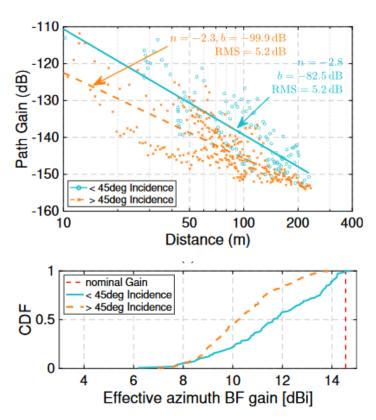
- 10 dB lower path gain
- 2dB lower beamforming gain




## Locational Effects - Building Floors

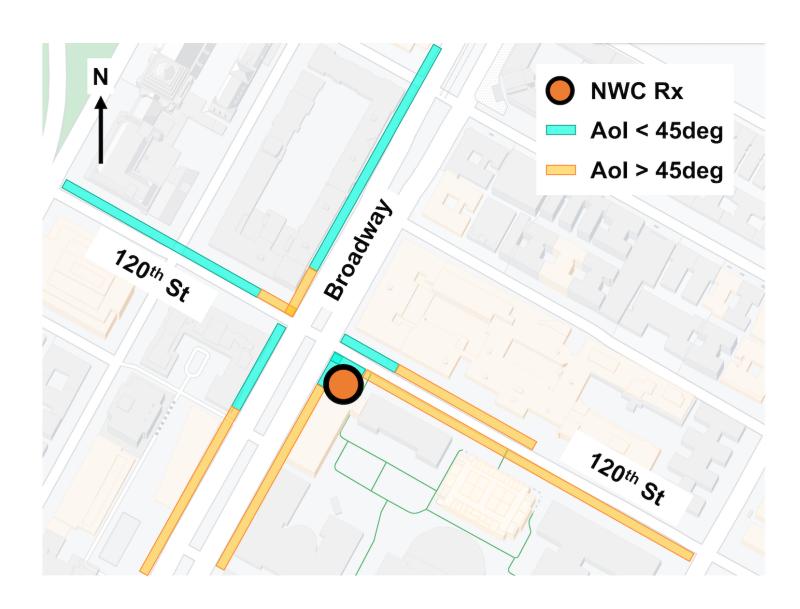





#### 2nd vs. 3rd Floor

2nd: 10 dB lower path gain& 1 dB lower beamforming gain




## Locational Effects - Angle of Incidence





#### **Angle of Incidence**


- ~10 dB difference in path gain at close range
- Decreases with range



#### Additional Results



- Additional results/discussion (omitted for time/space)
- MU-MIMO capability for users at far distance from a BS
- Environmental effects: scaffolding at building with UE, tree foliage
- Full report available at arXiv:2205.09436 [eess.SP]



**Scaffolding at NWC** 



**Typical Street Foliage around NWC** 



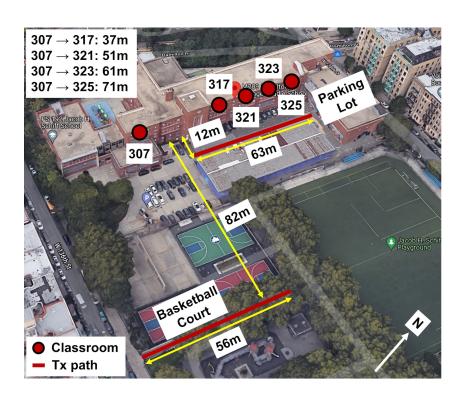
arXiv

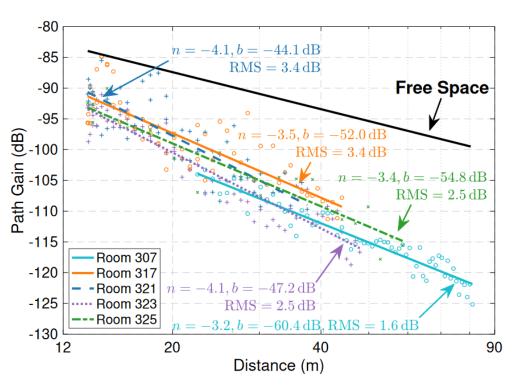
#### Outline



- Research Questions and Methodology
- The Outdoor-to-Indoor Measurement Campaign
- Path Gain and Link Rates in Different Scenarios
- Case Study of a Public Middle School + Dataset
- Closing Remarks




## Hamilton Grange Middle School (HMS)

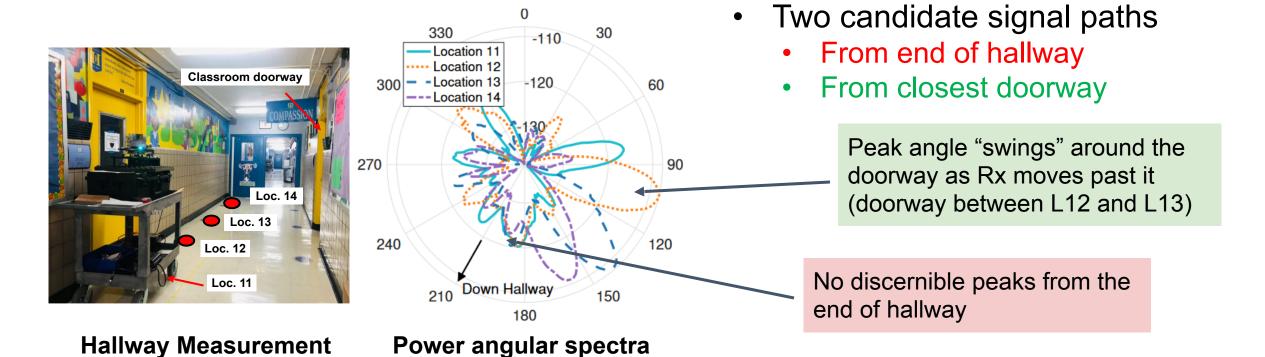





NYC Public Middle School in West Harlem

Work w/COSMOS RET Program Teachers






- Higher path gain at HMS than other locations thin, "traditional" glass
- Good potential for service provided by mmWave fixed wireless access
- Uniform path gain for all five classrooms measured

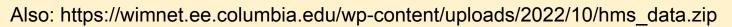
## Hamilton Grange Middle School (HMS)

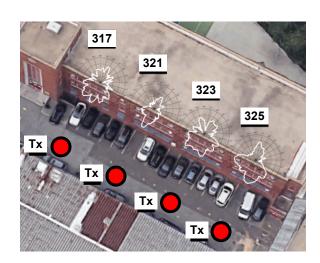


- Also performed "swapped" measurement: Tx stationary, Rx moved
- Rx moved along interior hallway in fixed 1m increments
- Power angular spectra can describe signal propagation to deep interior space



• D. Chizhik, J. Du, and R. A. Valenzuela. 2021. Universal Path Gain Laws for Common Wireless Communication Environments. In IEEE Trans. Antennas Propag


## Hamilton Grange Middle School (HMS)




- Back to the original research question...
- Otl coverage looks promising in buildings with less lossy window glass
- ~20 dB benefit over Low-e windows lessens beamforming requirements
  - Important: power angular spectra show greatly imparied azimuth beamforming gain in some cases

#### Hamilton Grange Dataset is Available!

Available at NIST: https://nextg.nist.gov/submissions/131





**BS-per-classroom** 





NIST

## **Closing Remarks**



#### Is outdoor-to-indoor (Otl) coverage feasible in mmWave networks?

- Yes, but your (building's) mileage may vary...
- Measured >2,000 Tx-Rx links across 7 locations in West Harlem, NYC
- Type of window glass used can have up to 20 dB of impact on path loss
- Other impacts such as mid-street blockages, height of indoors user:
   10-12dB of potential impacts
- Buildings with low-loss glass and line-of-sight to the BS: strong potential for Otl coverage at multi-Gb/s link rates
  - Bridge the digital divide through fixed wireless service provisioning





## Thank you!

http://wimnet.ee.columbia.edu

https://cosmos-lab.org

mpk2138@columbia.edu



Available at NIST: https://nextg.nist.gov/submissions/131





Also: https://wimnet.ee.columbia.edu/wp-content/uploads/2022/10/hms\_data.zip

We thank Basil Masood, Taylor Riccio, Jennifer Govan, and Barbara Han for their help with building access to HMS, MIL, TEA, and JLG.

Bell Labs







