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Background

* Deployment of various DERs in Power Grids:
- Rapid deployment of distributed energy resources (DERs)
- Power system operation heavily relies on information communication technologies (ICT) = Increase vulnerability
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Fig. 1. Various DERs and connecting communication links to the
EMS. Potential intraday FDI attacks targeting the communication
links and detection algorithm for EMS are also illustrated.



Vulnerability of Power Grids with High Renewable Penetrations

California Net Demand (2020 actual data)
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Outline

|. Vulnerability Analysis: Intraday FDI Attack on DER Dispatch Signals
* Intraday FDI Attack Model

* Dispatch prediction model
e FDI attack scenarios

ll. Kernel SVR-based Detection
* Kernel Support Vector Regression (Kernel-SVR)
* |dentification of Intraday FDI Attack w/ Kernel-SVR



Intraday FDI Attack Scenarios
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Fig. Dispatch & measurement
between EMS & DER

Step 1. Learn about system topology & characteristics
- Mid-/Long-term observations

Step 2. Predict demand / generations

Step 3. Develop falsification strategies

Name | Attack Model |

Network information:
topology (N, £) v
line impedance (R;, X;) v
line thermal limit (F7}) v




Intraday FDI Attack Model Summary

Dispatch
Prediction Model
(SOCP)

Objective

Decisions

Constraints

Minimize the total operation cost

Predictions on {Generation dispatch, Demand
response, Allocated reserve}

Power flow equations

Generation / Line / Demand response limits
Energy storage operations

Given solar/demand prediction

Dispatch
Falsification
Model

(QP)

Objective

Decisions
Constraints

Minimize the magnitude of falsification signals
and temporal changes

DER dispatch falsification signals

Individual falsification size limits proportional
to the predicted signals

Supply-demand deviation exceeding the
predicted reserve




Vulnerability analysis (Scenario A - generation setpoints)

* Attacker manipulates the generation dispatch signal from/to EMS
* From EMS’s perspective, the monitoring signal is consistent with the original signal as the attack falsify the
both directions.
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Fig. Summary of dispatch and measurement signal
flow — falsified signals are marked with red color

(b)

Fig. Dispatch signal flow of (a) normal operation case and (b)
operation under FDI attack on generation dispatch.



Generation profile of the HCE test system
Test system & DERs

® 115kV bus

25KV bus w/ control center Network, Demand, Generation profile provided from HCE
@ kb / High solar penetration assumed (around 15%)

— transformer / - Three controllable generators

= |oad curtailment

=% generation dispatch

\ scenario 1

\ scenario 2

® 230KV bus

. = Software platforms
- Optimization models implemented using
Julia/JuMP packages with Gurobi/lpopt
- Kernel SVR model implemented using Scikit-learn library

= Detection model
- 6-hour of monitoring window, 2-hour of prediction window
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Fig. Hourly generation profile and allocated reserve (5% of the g

system load) of Day 110 under FDI attack on generation setpoints.
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** Solar generation has been scaled up 6 times (overall resulting solar penetration is
around 15%, similar to the current practice in the state of California)



Vulnerability analysis (Scenario A - generation setpoints)

* Attacker manipulates the generation dispatch signal

from/to EMS

* Asaresult, the reduced total generation (dashed lines)

exceeding the system security margin (shaded area).
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Fig. Generation setpoints: original dispatch (solid lines)
and falsified signals (dashed lines)
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Vulnerability analysis (Scenario B - load curtailment setpoints)

Attacker manipulates the load curtailment dispatch from/to EMS
From EMS’s perspective, the monitoring signal is consistent with the original signal as the attack falsify the

both directions.
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Vulnerability analysis (Scenario B - load curtailment setpoints)

power [MW]

Attacker manipulates the load curtailment dispatch
from/to EMS

As a result, the reduced total generation (dashed lines) &
exceeding the system security margin (shaded area). %
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Fig. Falsified load curtailment signal in basalt-s area
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Outline

ll. Kernel SVR-based Detection
* Kernel Support Vector Regression (Kernel-SVR)
* |dentification of Intraday FDI Attack w/ Kernel-SVR
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Identification of Intraday False Data Injection Attack

* Supervised Learning-based Detection: Kernel Support Vector Regression (Kernel-SVR)
* Kernel-SVR for time series forecasting (e.g., wind speed prediction, load prediction)

* Kernel-SVR for multi-temporal correlation in the system status & dispatch signals and identifying time-series FDI attacks

z
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User-defined parameters
C: Weight, €: Insensitive zone
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Identification of Intraday False Data Injection Attack

* Supervised Learning-based Detection: Kernel Support Vector Regression (Kernel-SVR)

TABLE 1. ASSUMPTIONS FOR THE ATTACK AND DETECTION MODELS

T i
< - Testing data Name | Attack Model | Detection Model
Normal operation data data split Network information:
- Dispatch Training data tOpOlOgy (N ) ﬁ) v v
- Prediction Error line impedance (R, X7) v v
- Operation Margin line thermal limit (F7) v v
SVR model
— Dispatch signals:
v
: b
Falsified dispatch data generatlon_ output (g’it)t - P& A
Di load curtailment (df}* - P&A
- Dispatch Tost & (?h/dis
- Operation Margin ost @ storage dispatch (p ) - P&A
Validation kt
— reserve (7;¢) - P&A
— Features — Targets Measurements:
Fig. 1. Flow of data for training and testing the proposed SVR model. nodal demand ( Dpt) P P& A
n
nodal voltage (vnt, Ont) - v

* P: prediction, A: actual, v': assumed to be known, — unknown
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Identification of Intraday False Data Injection Attack
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Fig. 2. Dispatch signal flow of (a) normal operation case and (b)
operation under FDI attack on generation dispatch.

* Supervised Learning-based Detection: Kernel Support Vector Regression (Kernel-SVR)
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Identification of Intraday FDI Attack — Scenario A

* Supervised Learning-based Detection: Kernel Support Vector Regression (Kernel-SVR)
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Identification of Intraday FDI Attack — Scenario B

* Supervised Learning-based Detection: Kernel Support Vector Regression (Kernel-SVR)
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Conclusion

Summary

We analyzed the vulnerability of power grids with high PV penetration against an intraday FDI attack that
falsifies DER dispatch and monitoring signals.

Based upon the dispatch prediction and dispatch falsification models, we illustrated how gradual
manipulation of DER outputs can cause a power imbalance which exceeds the system reliability margin.

To enhance the power grid reliability against the attack scenario, we also proposed a detection model
utilizing a kernel SVR which allows a power grid operator to predict the reduction in the system margin
ahead of time.

The numerical experiments demonstrate the attack scenarios and the performance of the detection model
on the HCE test system, which is based on real-world demand and generation profile data provided from a
power utility in Colorado.
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