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This article explores city intersections as intelligence nodes 

using high-bandwidth, low-latency services for providing 

privacy-preserving smart city applications. COSMOS testbed 

experiments using edge-computing-based artificial-

intelligence techniques are reported, for monitoring of 

pedestrians, cloud-connected vehicles, and traffic management.

Smart cities should be built with the primary goal 
of providing social good as defined by local 
communities.1,2 Contemporary technologies 
provide a plethora of components to support 

human-centered design of future metropolises. Privacy, 
security, and local data governance on one hand, and opti-
mization of bandwidth, computational resources, and 
latency on the other hand, implicate traffic intersections as 
excellent locations for smart city intelligence nodes.

Traffic intersections can support smart city features 
and traffic dynamics by utilizing available power supply 
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and communications infrastructure to 
enable interconnections and computa-
tional collaboration among neighbor-
ing intelligence nodes. The nodes will 
be equipped with artificial intelligence 
(AI)-enabled edge-computing3 and com-
munications equipment to facilitate 
automated low-latency data harvesting, 
inference, and decision making. This 
will enable the development of tech-
nologies like cloud connected vehicles, 
vehicle to infrastructure communica-
tions, and advanced sensor-based tools 
for alerting pedestrians and assisting 
handicapped individuals. Future appli-
cations will require intense AI-enabled 
computation, very high communication 
bandwidths, and ultralow latencies.

We report the results of research on 
low-latency real-time applications for 
smart city intersections in metropo-
lises and architectures, components, 
and methods for building intelligent 
intersection nodes. The research uti-
lizes COSMOS, an experimental test-
bed located in New York City.4

SMART CITY  
INTERSECTIONS
The focus of this article is low-latency 
high-bandwidth applications for smart 
city intersections. We explore techno-
logical components needed to support 
privacy-preserving real-time appli-
cations, such as collaborative control 
of cloud-connected vehicles and active 
pedestrian alert and assistance, where 
the primary sensors are multiple high- 
resolution surveillance cameras. One 
of the key tasks for video-based appli-
cations is to detect and track objects 
in an intersection with high accuracy. 
We explore methods to achieve real-time  
processing in smart city intersection 
applications defined by end-to-end laten-
cies under 33.3 ms. This includes 1) sen-
sor data acquisition, 2) communication 

among end-users, sensors, and edge 
cloud, 3) AI-based inference computa-
tion, and 4) providing feedback to partici-
pants in the intersection. The envisioned 
“radar-screen” application is intended 
to broadcast the positions and veloci-
ties of objects to intersection partici-
pants in real time.

Privacy
Smart-city implementations prior to 
year 2022 indicate that privacy and data 
security are the key concerns impeding 
successful large-scale deployments. Pri-
vacy concerns are amplified when video 

recordings are a part of data acquisition 
and processing. The COSMOS research 
program has a strong community out-
reach component, exemplified by mul-
tiyear activities on running National 
Science Foundation (NSF) Research 
Experience and Mentoring (REM) and 
Research Experiences for Teachers (RET) 
programs where teachers from Har-
lem and other New York City schools 
get training and participate in develop-
ing science, technology, engineering, 
and mathematics educational material 
for students in underprivileged schools 
(https://w w w.cosmos-lab.org/out-
reach/5). Our guiding approach to pri-
vacy is to integrate local communi-
ties into the data governance process. 
We plan to develop technologies that 
enable the communities to define and 
control data acquisition and processing 

supported by edge computing and tem-
porary data storage paradigms. This 
article describes some technological 
components which would need to be 
managed in collaboration with local 
communities, such as blurring of faces 
and license plates.

Real-time interactions
An important goal of smart city deploy-
ments is to improve the safety of pedes-
trians and other participants. Even in 
the most congested cities it is desirable 
to replace human drivers with safer 
self-driven vehicles. This motivates 

the concept of cloud-connected vehicles 
that interact with city infrastructure 
to improve their ability to navigate 
and requires exceptionally low closed-
loop latencies associated with security-
critical real-time actions. This article 
explores latencies which are inherent 
in camera-based sensor data acquisi-
tion and processing.

Real-time for safety-critical appli-
cations. Extracting intelligence that 
indicates a potential collision and pro-
viding feedback to vehicles or pedes-
trians presents computational and 
latency challenges. City street dynam-
ics are determined by vehicles traveling 
at velocities between 0 and 100 km/h. If 
we consider for example a vehicle travel-
ing at 10 km/h, an arguably reasonable 
speed within congested intersections, 

IF THE VEHICLE’S BRAKES COULD BE 
ACTIVATED WITHIN THAT TIME, IT IS 

CONCEIVABLE THAT LIFE-THREATENING 
TRAFFIC ACCIDENTS WOULD BE AVOIDED.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 28,2022 at 02:44:08 UTC from IEEE Xplore.  Restrictions apply. 



SMART AND CIRCULAR CITIES

76	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

the vehicle is moving at approximately 
3 m/s. If we divide 3  m/s by the stan-
dard frame rate of a conventional video 
equal to 30 fps, the result is a vehicle 
movement of 10 cm, the distance trav-
eled in 33.3 ms. If the vehicle’s brakes 
could be activated within that time, 
it is conceivable that life-threatening 
traffic accidents would be avoided. This 
approximate calculation motivated us 
to investigate what is needed to sup-
port latencies below 33 ms—this is an 
aggressive target, which is not achiev-
able by contemporary chain of sensing, 
video coding, communications, and 
computing technologies.

Sensor latencies. Smart city sensors 
will have a wide range of operational 
frequencies and data acquisition band-
widths. CO2 sensors may collect sev-
eral bytes per hour, whereas high-res-
olution cameras may stream data in 
compressed form at tens of megabits 
per second, or in uncompressed form 
at several gigabytes per second. Low-
cost CMOS imaging sensors have laten-
cies of several milliseconds, which are 
low enough not to obstruct the closed-
loop target of 1/30 s. Internet Protocol 
(IP) cameras use video encoding and 
streaming protocols that, because of 
interframe coding, may have buffers 
requiring hundreds of milliseconds to 
decode; this process severely impedes 

the ability to provide closed-loop ser-
vices faster than 33.3 ms.

Communications latencies. Commu-
nications and networking latencies 
are determined as much by speed of 
physical media as they are driven by 
protocols at the application layer. The 
COSMOS optical network can provide 
up to 100 Gb/s, offering almost unlim-
ited raw speed. On the other hand, 
conventional streaming of high-reso-
lution videos can create hundreds of 
milliseconds of latency. This suggests 
that video processing and inference 
are best done at the “extreme” edge—

right next to the video sensor. More 
interestingly, this motivates research 
on integrated coding and video trans-
mission protocols optimized for ultralow 
latency transmission of videos over 
high bandwidth edge communica-
tions infrastructure.

Inference and decision latencies. 
Inference latencies come from video 
preprocessing and deep learning (DL) 
algorithms for object detection and 
multiple-object tracking (MOT). The 
training of DL models is done offline 
and does not impact latencies for real-
time interactions. Both published work 
and our own studies indicate that con-
temporary GPUs within specialized 

pipelines such as NVIDIA TensorRT and 
DeepStream can deliver speeds above 
30 fps for object detection and tracking. 
We previously showed that inference 
speed varies as a function of input res-
olution and actual device capabilities, 
but we assess that inference computa-
tion will not be a bottleneck in meeting 
our real-time latency target.

The decision process is defined as a 
higher level of intelligence built on top 
of object detection and tracking. For 
example, this process would deduce the 
implications of a pedestrian being on 
a trajectory to intersect with a speedy 
vehicle and create a warning (or even a 
command) for the pedestrian or vehi-
cle. Computational needs for this type of 
processes are subject to ongoing studies, 
but it is expected that the corresponding 
latency would be less than a millisecond.

COSMOS experimental testbed
New York City is an example of a busy 
metropolis which provides formidable 
challenges for the deployment of smart 
city technologies. Busy urban traffic 
intersections have a large number of 
vehicles and pedestrians moving in 
many directions at various speeds, often 
with chaotic or unpredictable behavior. 
Furthermore, obstructions like building 
corners, parked vehicles, and construc-
tion equipment present difficulty to 
autonomous vehicle sensors requiring 
further advancements in traffic inter-
section-based automation of monitor-
ing, measuring, learning, and feedback.

The COSMOS testbed, NSF-funded 
Cloud Enhanced Open Software Defined 
Mobile Wireless Testbed for City-Scale 
Deployment,4 provides an experimen-
tation platform for applications and 
architectures to support intelligence 
nodes of future metropolises. For our 
research, we use the COSMOS pilot 
site located at Columbia University, 

CONVENTIONAL VIDEO STREAMING 
PROTOCOLS MAY BE INADEQUATE FOR 

ACCOMPLISHING VERY LOW LATENCIES, 
SO RESEARCH INTO EDGE-STREAMING 
PROTOCOLS IS AN APPEALING TOPIC.
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in New York City, at the intersection 
of the 120th Street and Amsterdam 
Avenue. The pilot node includes two 
street-level and two bird’s eye cameras, 
as illustrated in Figure 1. The COSMOS 
edge cloud servers can run real-time 
algorithms for detection and tracking 
of objects in the intersection to moni-
tor and manage traffic flow and pedes-
trian safety. The node is equipped 
with an optical x-haul transport sys-
tem that connects AI-enabled edge 
computing clusters. This allows for 
baseband processing with massively 
scalable CPU and GPU resources with 
field-programmable gate array assist, 
which can also support software-de-
fined radios. Four technology layers 
are provided for experimentation: the 
user device layer, radio hardware and 
front-haul network resources, radio 
cloud, and general-purpose cloud.

BUILDING BLOCKS OF 
INTELLIGENT NODES
As of 2022, individual technological 
modules for implementing the vision 
of smart cities exist in the form of low-
power chips, high-bandwidth modems, 
wired and wireless networks, and GPUs 
for machine learning (ML) and DL. 
However, major challenges exist in the 
domains of privacy preservation, secu-
rity, intelligent decision making, sys-
tem integration, and in the interactions 
between technology and social good.

Sensors
Sensors range from dozens of low-
rate Internet of Things (IoT)-based 
devices collecting data about pollution 
to several high-resolution lidars and 
cameras providing real-time feeds. 
Multimodal data aggregation and col-
laborative intelligence are research 
topics of notable importance to smart 
intersection nodes.6

Networking
For high-bandwidth applications, net-
working at one intersection has to 
support wireless and wired connectiv-
ity from half a dozen infrastructure-
installed cameras. Whereas coded 
video from a conventional IP-camera 
may require subhundred Mb/s, exper-
imentation with ultra-low latency 
provides motivation to send raw video 
at several Gb/s per camera. Support 
for cloud-connected vehicles could 
require harvesting videos and other 
data from each vehicle wirelessly, 
in either raw or meta format. Con-
ventional video streaming protocols 
may be inadequate for accomplish-
ing very low latencies, so research 
into edge-streaming protocols is an 
appealing topic.

Edge computing
Smart city intersection applications 
require substantial computational 

resources, demand minimal laten-
cies, and their functionality can be 
constrained to a limited geographical 
area. Furthermore, data privacy, secu-
rity, and local data governance are 
of utmost importance. This strongly 
implicates edge computing as the right 
modality. Two forms of edge com-
puting can be used. In the extreme, 
AI-based computing can be done on 
devices located at the sensors, such 
as Nvidia Jetson Nanos or ML-enabled 
ARM M1-M4 processors integrated 
into IoT chips. On the other hand, a 
more powerful computing node can be 
located in a facilities room of a build-
ing at the intersection. The node is 
then connected to sensors by high-
speed wireless, wired, or optical infra-
structure. To support low latencies 
from sensors to actuators via AI com-
puting, an edge computing node has to 
be integrated tightly with the network 
communications infrastructure.

FIGURE 1. The COSMOS pilot site with cameras and edge-cloud nodes.
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AI-enabled data processing
Intelligent tasks supporting smart 
city intersections are varied in com-
plexity: CO2 sensors generate several 
bytes once per hour, whereas high-res-
olution cameras in our studies gen-
erate megabits per second to be ana-
lyzed by visual DL models for object 
detection, tracking, and intelligent 
decisions for actuators. Automation 
and AI are crucial to scale systems for 
highly congested traffic intersections. 
Off-the-shelf AI models must be modi-
fied and retrained to accommodate the 
peculiarities of smart city intersection 
applications—one example being the 
detection of tiny pedestrians when 
viewed from bird’s eye cameras.

Data preprocessing. Visual DL tools 
require data preparation, labeling, and 
augmentation. The COSMOS pilot node 
contains low-elevation cameras and 
high-elevation bird’s eye view cam-
eras, each requiring different type of 
preprocessing (Figure 2). The variation 
in angles and distances to the intersec-
tion, scale of objects, and overlapping 
field-of-views allow experimentation 
with the best view for a given applica-
tion. For example, street-level cameras 
are closer to traffic objects. They con-
sequently provide more visual details 
for applications such as multicamera 
object reidentification but are not as 
well suited to analyze large-scale traf-
fic patterns due to the scale distortion 
among objects at varying distances to 
the camera—the bird’s eye view cam-
eras offer a better perspective for this 
type of application.

High-elevation cameras allow us 
to perform calibration transforms to 
improve the effectiveness of DL mod-
els. See in Figure 2 and Figure 3 that 
the high-elevation camera view can be 
adjusted to appear perpendicular to the 

FIGURE 2. The COSMOS testbed camera views. (a) First-floor camera, 120th St. (b) Second- 
floor camera, Amsterdam Ave. (c) 12th-floor camera, Amsterdam Ave. (d) Calibrated 
12th-floor camera.

(a) (b)

(c) (d)

FIGURE 3. (a) Calibrated 16:9 native frame. (b) 16:9 frame squared using zero-padding. 
(c) Square cropped frame. 

(a)

(b)

(c)
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road by applying a homography trans-
formation, after which resizing and 
cropping of the frame create the square 
aspect ratio required by many DL mod-
els. In our traffic intersection use case, 
there are locations in the frame where 
relevant objects do not appear (that is, 
no cars on building walls or pedestri-
ans flying in the air). This motivates 
the creation of (black) masks overlayed 
on top of the frames, as seen in Figure 3 
and Figure 4.

Supervised object detection and 
tracking models require a large num-
ber of precisely annotated ground truth 
labels to train the algorithms. Producing 
accurate and consistent sets of labeled 
videos is difficult since both domain 
knowledge and significant amounts of 
time are needed. To support our exper-
iments, we annotated thousands of 
frames capturing the intersection in 
various weather, lighting, and conges-
tion conditions.

Object detection models typically 
struggle with small object detection. 
Tiny pedestrians in the bird’s eye camera 
view, as well as far-away license plates 
in the street-level camera view, convey 
very little information. This results in 
relatively poor detection and tracking 
accuracies. To improve the performance, 
we have deployed techniques of training 
the DL models with a small-object drone 
acquired data set7 and our COSMOS 
data sets and applying data augmenta-
tion techniques such as the copy/paste 
method illustrated in Figure 4(d).

Object detection and tracking. In 
smart traffic intersections, detecting 
pedestrians and vehicles and tracking 
their trajectories are the prerequisites 
for all downstream applications (Fig-
ure 5). This involves two computer vision 
tasks: object detection and MOT. The 
objective of object detection is to localize 

and classify objects within the frame. 
MOT aims to associate object identities 
across successive frames. State-of-the-
art methods rely on DL blocks such as 
convolutional neural networks (CNNs)8 
and vision transformers.9 These meth-
ods bring heavy computational cost, and 
the accuracy-speed tradeoff (the budget-
ing between computational complex-
ity and inference speed) is vital to the 
success of smart city applications. With 
this consideration in mind, we exper-
imented with a series of algorithms for 
detecting and tracking objects to find 

the best approach10 based on our cus-
tom annotated data set for bird’s eye 
videos. We choose YOLOv411 as the base 
detector for all downstream applica-
tions since it is able to provide accurate 
results in real time. Object detection 
performance is shown in Table 1, where 
the average precision (AP) and mean AP 
(mAP) are used as the evaluation met-
rics (Figure  6). On our bird’s eye view 
intersection data, YOLOv4 outperforms 
both RetinaNet12 and single-shot multi-
box detector (SSD)13 in terms of AP and 
inference speed, where inference speed 

FIGURE 4. (a) YOLOv4 detections of faces and license plates in street level video. 
(b) SORT tracking of vehicles and pedestrians in bird’s eye video. (c) Bird’s eye ground truth 
bounding box labels of intersection objects. (d) Pedestrian copy-paste data augmentation 
for improving detection of small objects.

(a) (b)

(c) (d)
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is measured as the average time for a 
forward pass through the model with 
batch size equal to 1. For MOT, different 
scenarios need to be considered sep-
arately. For bird’s eye cameras, object 
occlusions barely occur, so reidentifi-
cation (reID) calculation is not as nec-
essary as for the ground-level cameras. 
The reID calculation is often the compu-
tation bottleneck in MOT algorithms. 
“Simple online and real-time tracking” 
(SORT) and “simple online and real-time 
tracking with a deep association met-
ric” (DeepSORT) suffice for the bird’s eye 
view cameras. Illustrations for detec-
tion are shown in Figure 4.

Image resolution and object density. 
Highly elevated bird’s eye cameras 
have a good view of the overall scene, 
shown in Figure 2. Pedestrians, which 
appear small, become a problem for 
object detection and tracking. Intui-
tively, the higher the resolution of the 
input image, the more object features 
can be preserved. However, higher res-
olution leads to a larger computational 
cost, thus making the inference slow. 
We tested a dozen combinations of 
image input resolutions and aspect 
ratios to find the best balance between 
accuracy and speed, three of which 
are shown in Figure 3. Some DL mod-
els, like YOLOv4,11 perform better on 
input images with a fixed-sized, square 
aspect ratio. To maximize the preserva-
tion of important features of the inter-
section scene and to minimize the irrel-
evant components, the experiments 
indicate that the “squared cropped” 832 
× 832 input produces the best results.14

Object density refers to the number 
of objects in a scene, which may impact 
the speed of inference as the busyness 
of the streets change through the day. 
We explored the inference time for 
ten 90-s videos where the number of 

TABLE 1. Object detection performance.

Model Pedestrian AP (%) Vehicle AP (%) mAP (%) Inference Speed*

YOLOv4 66.31 97.58 81.95 34.99 

SSD 57.04 94.81 75.93 11.31 

RetinaNet 20.83 95.59 58.21 22.97 

*Inference speed (fps) on NVIDIA T4 GPU.

FIGURE 5. Pedestrian and vehicle detection on 120th Street and Amsterdam Avenue, 
fourth floor view.

FIGURE 6. The mAP for pedestrians and vehicles; nine cases of image resolution versus 
aspect ratio.
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objects varied from 4,000 to 26,000. 
The results show approximately 40% 
increase in computational load from 
the lowest to the highest density case. 
This indicates that object density mea-
sure can be used to switch among 
computational resources to obtain the 
optimal power/accuracy balance.

APPLICATIONS
Advances in video-based object detection 
and tracking have enabled the deploy-
ment of a number of traffic intersection 
applications, where one can identify the 
locations of objects in the intersection 
and classify them by type of vehicle, 
pedestrian, bicycle, and so on They can be 
tracked as unique entities which persist 
through the duration of traffic cycles, dif-
ferent camera views, and times of the day, 
week, month, and year. The abundance of 
spatial, temporal, and visual data makes 
it possible to perform data anonymiza-
tion, quantization of traffic trends, crowd 
behavior surveillance, real-time inter-
section radar mapping, and more.

Privacy protection—face and 
license plate anonymization
Collecting real-time images and videos 
of public spaces from street level inad-
vertently involves capturing sensitive 
information such as faces and license 
plates. To avoid leaking private infor-
mation with our data sets, we gener-
ated a pipeline to automatically blur 
these sensitive areas.15 We trained sev-
eral object detection models on a cus-
tom-labeled data set to detect faces and 
licenses for subsequent anonymiza-
tion. When training with sequential 
video data sets, it is important to leave 
entire videos out of the training pro-
cess to use for validation. Stationary 
objects—parked cars, seated pedes-
trians, chained bicycles, and so on—
occur identically in many frames, and 

model evaluation on these stationary 
objects yields biased results. This leads 
to model overfitting and poor gener-
alization to new intersection scenes, 
which has to be addressed.

Figure 7 shows an example input 
and output frame of the anonymiza-
tion pipeline. For our face and license 
detection model, we chose YOLOv411 
for its compromise between detection 
accuracy and inference speed. For pri-
vacy-critical applications, the most rele-
vant performance measure is recall, the 
number of relevant faces and licenses 
that are detected out of the total number 
that pass through the frame. False posi-
tives are less of an issue than false neg-
atives, as they result in an extra blurred 
area of the frame, but not a privacy leak. 
In our case, not all faces and licenses are 
“relevant”—some are too far away and 
too low resolution to be identifiable. 
We exclude these instances from the 
recall evaluation by defining pixel area 
thresholds below which the objects are 
ignored. We found that, below certain 
thresholds, facial features and license 
plate characters could not be reliably 
identified. While there exist informa-
tion reconstruction techniques that 
could potentially recover these fea-
tures, this is outside the scope of this 
project. Furthermore, we would need to 
reconsider our choice of anonymization 

as any form of blurring becomes ineffec-
tive. In the visible object evaluation, our 
pipeline blurs over 99% of visible faces 
and licenses and in the total evaluation 
it blurs over 96% of objects greater than 
100 pixels.

To increase our confidence in the 
anonymization pipeline, we performed 
manual evaluations by inspecting ano-
nymized output videos for misses, where 
a miss is defined as an object with more 
than a quarter of the face or license 
plate exposed. The results of the man-
ual evaluations confirmed the results 
of the programmatic evaluations and 
shed some light on edge cases where 
our models consistently missed (Fig-
ure 8). Most edge cases were due to 
occlusions, such as occluded borders of 
license plates, pedestrian body occlu-
sion, and tree branch occlusion, result-
ing in consistent false negatives. More 
data collection and training is needed 
to rectify these edge cases.

Counting objects
An important goal for smart intersec-
tions is to analyze traffic flow in real 
time. To this end, we use detection and 
tracking to classify and count vehicles 
and pedestrians and follow their paths 
through the intersection. Accumulation 
of the tracks provides sufficient data for 
traffic trend analyses that can be used to 

FIGURE 7. (a) The Input and (b) output of the face and license plate blurring pipeline.

(a) (b)
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optimize traffic flow and improve pedes-
trian safety in the intersection.

To perform object tracking, we use 
the detection-based (MOT) algorithm 
DeepSORT. DeepSORT requires an 
object detection model to provide the 
localization and classification infor-
mation. Given detections of vehicles 
and pedestrians, DeepSORT uses a Kal-
man filter and Hungarian algorithm to 
map detections with similar sizes and 
motions across frames of a video. In 
this way, we can assign IDs to detected 
objects that persist throughout multi-
ple video frames. Additionally, Deep-
SORT uses visual features of the object 
to increase the reliability of the track-
ing. Even if the object is not detected in 
consecutive frames, it can be assigned to 
the correct track by the reidentification 
model (reID) based on its visual features.

Though DeepSORT is a robust track-
ing system, it is still dependent on 
high-quality object detection. If an 
object is not detected or misclassified 
for multiple consecutive frames, it will 

be regarded by the algorithm as a “new 
track”—the old track disappears and a 
new one is created upon redetection. For 
vehicles, we achieve consistent high accu-
racy detection and corresponding high 
accuracy tracking, but for pedestrians, 
which have 4–5x smaller cross sections, 
high accuracy detection is a more chal-
lenging task. Pedestrian tracking accu-
racy suffers as a result of lower accuracy 
pedestrian detection. Data augmentation 
techniques, such as the copy-paste pedes-
trian method shown in Figure  4(d) and 
pretraining object detectors on small- 
object data sets show improvement for 
small-object detection, but pedestrian 
detection and tracking accuracies are still 
lower than for vehicles, with MOT accu-
racies (MOTA) of 75.16% and 18.23% for 
vehicles and pedestrians, respectively.

The vehicle tracking performance 
is sufficient for applications that quan-
tify traffic flow. For example, in an 
automatic counting task we record 
vehicles passing through the intersec-
tion as turning right, turning left, or 

going straight from all four directions 
with an accuracy of 95% evaluated 
over 21 min of a video recording.

Social distancing in pandemics
Smart cities can assist in combating 
global pandemics, such as COVID-19, 
by providing means for monitoring, 
analyzing, and potentially controlling 
social distancing behavior. We proposed 
several techniques and applied them to 
video data sets collected at the COSMOS 
pilot intersection.

The fundamental idea is to estimate 
distances between pedestrians and com-
pare them against the recommended 
minimal distance threshold. The first 
step is to detect the pedestrians. The real-
world distance is then estimated by cal-
culating the pixel-wise distance between 
pedestrians within one frame. The track-
ing of pedestrians between frames facili-
tates the calculation of higher order sta-
tistics, related to safe social distancing 
groups, which are more meaningful than 
an individual-to-individual social dis-
tancing violation rates. When acquain-
tances are walking together on the street 
as a” safe group,” the intragroup distance 
is often smaller than the social distanc-
ing threshold, which (incorrectly) trig-
gers the indication of the violation. To 
solve this problem, we utilize the pedes-
trian trajectory similarity and stability, 
which can evaluate the motion dynamic 
between every pedestrian pair. This 
group validation approach is able to sig-
nificantly reduce the number of false pos-
itive violations, achieving the F1 score of 
0.92. Based on this approach, we built a 
social distancing analysis (SDA) system 
B-SDA16 for bird’s eye view cameras, as 
well as a complementary method Auto-
SDA17,18 with ground-level cameras.

An example of the results obtained 
with the bird’s eye video data set (Fig-
ure 9) shows the distribution of the 

FIGURE 8. Successful blurring detections (top) versus edge cases (bottom).
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duration of social distancing violations 
during the Covid-19 pandemic. Fig-
ure 10 shows the social distancing vio-
lation rates for the street-level camera 
data set 1) during the pandemic and 2) 
after the vaccine was widely available. 
Detailed analyses and comparisons of 
multiple statistics before the pandemic 
and during the pandemic demonstrate 
that the proposed systems can reliably 
identify social distancing violations.

Real-time “radar screen”
The “radar-screen” application aims to 
infer positions and velocities of objects 
within a traffic intersection and broad-
cast them to the participants in the 
intersection in real time, as illustrated 
in Figure  11. The information can be 
distributed in raw or coded/meta for-
mat. The application intends to provide  
a real-time service with latency of 1/30 s  
between the observation of objects 
and the wireless broadcast delivery. As 
described previously, this is motivated 
by the approximation of a 10-cm vehi-
cle movement with speed of 10 km/h. 
The application includes the acquisi-
tion of videos from surrounding build-
ings, potential harvesting of videos (or 
encoded data) from cameras within 
vehicles, harvesting of IoT sensor data, 
transmission via a high-speed network 
to the inference computer, data aggrega-
tion and preprocessing, DL-based object 
detection and tracking, extraction of 
information at a higher abstraction 
level, and (in a more advanced version) 
deduction of commands that may be 
issued to individual vehicles after opti-
mizing the traffic flow. The final step is 
the broadcasting of information. This 
is an aspirational application in that 
achieving the cumulative latency of 
33.3 ms is technologically very challeng-
ing. Balancing between computational 
capabilities, power consumption, and 

latency minimization of the extreme 
edge compute units or edge comput-
ing centers, requires rapid sensor 
data acquisition and dynamic network 
and resource control. This application 

motivates research to optimize each 
of the building blocks described in 
previous sections of this article as 
well latency-focused cross-module sys-
tem integration.

FIGURE 9. B-SDA: Distribution of the duration of social distancing violations.
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FIGURE 10. Auto-SDA: Normalized histogram of the percentage of social distancing 
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FIGURE 11. The “radar screen”: one frame of a video containing locations and velocities 
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Traffic management
Intelligent nodes located at individual 
intersections provide powerful data acqui-
sition and intelligent edge-computing. On 
a larger scale, smart cities require the 
aggregation of data from multiple inter-
sections and mutual coordination. In 
that vein, we have commenced collab-
orative studies with traffic engineering 
experts on the definition of key param-
eters, such as timing resolution, sensor 
locations, and application programming 
interfaces for data exchange between 
intelligent smart intersection nodes and 
traffic optimization systems.19 We are 
building simulators and defining digital 
twins that will play predictive roles in 
the behavior of individual traffic partici-
pants and in global optimization of traf-
fic management.

A vision of the smart city inter-
section as the intelligence 
node for future metropolises 

has been presented. The proposed archi-
tecture is driven by societal needs to 
preserve privacy, which strongly impli-
cate edge computing and intelligence as 
the key paradigm for data management 
and processing. Key technological com-
ponents have been reviewed, such as 
sensors, networks, and edge AI comput-
ing. Real-time needs of future safety-crit-
ical systems have been examined, and 
design considerations for the aspirational 
“radar-screen” application, which closes 
the loop from sensors to actuators, have 
been summarized. The requirements for 
low latency, based on the 33.3-ms target, 
have been explored. System integration 
challenges have been illustrated using the 
examples from experiments performed 
on the pilot node of the COSMOS testbed 
in New York City.

Our research points to the following 
exploration topics:

1.	 State of the art DL-based object 
detection models are comprised 
of over 60 million parameters 
and require passing more than 
100 convolutional layers, where 
each convolution has com-
plexity. Model optimization 
techniques like weight prun-
ing, inference scheduling, and 
neural algorithmic search strat-
egies20 need to be incorporated 
into practical systems.

2.	 Reliance on supervised data sets 
for video processing is not scalable 
due to the labeling cost and qual-
ity concerns. This necessitates 
research on unsupervised learn-
ing methodologies which should 
be based on continuous or active 
learning and take advantage of 
the peculiarities of the fixed scene 
within a traffic intersection.21

3.	 Data fusion from multiple cam-
eras is expected to yield notable 
improvements in detection and 
tracking accuracies.

4.	 Achieving low latency for low-
rate little-data applications is pos-
sible by using processing on the 
“extreme edge,” but meeting the 
requirements of 1/30-s latency for 
high-resolution videos is a chal-
lenge. New video coding methods 
and streaming protocols should be 
explored with focus on localized 
low-latency performance. 
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