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ABSTRACT
We present a set of experiments utilizing wideband real-time adap-
tive full-duplex (FD) radios, demonstrating simultaneous trans-
mission and reception on the same frequency channel. Each FD
radio consists of a circulator-based antenna interface, a switched-
capacitor delay-line-based configurable Radio-Frequency Integrated
Circuit (RFIC) that implements Self-Interference Cancellation (SIC),
an FPGA that optimizes the RFIC configuration in under 1.1 sec
and can adapt to environmental changes in under 0.3 sec, and a
Software-Defined Radio (SDR) transmitting OFDM-like packets.
We demonstrate a real-time adaptive FD radio that achieves the
SIC necessary to reach the noise floor across a wide bandwidth of
50MHz. Then, we use two FD radios to create a wireless link and
showcase the superior FD throughput.
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1 INTRODUCTION
Full-duplex (FD) wireless has drawn significant attention in recent
years [3, 16, 17, 22] as an enabler of next-generation wireless net-
works, due to its potential to double the data rate at the Physical
layer (PHY) and to provide additional cross-layer benefits through-
out the networking stack. The main challenge associated with FD
wireless is the strong self-interference (SI) signal at the receiver that
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(a) Block diagram of the presented FD radio.

(b) Implementation of the presented FD radio.

Figure 1: The wideband real-time adaptive FD radio consist-
ing of an antenna, a circulator, an RFIC canceller, an SDR, a
PC running GNU Radio, and an FPGA. A phase-locked loop
(PLL) synthesizer provides the clocks used by the RFIC.

needs to be suppressed to the noise floor, requiring 70 – 110 dB of SI
cancellation (SIC) across the antenna, analog, and digital domains.

Achieving sufficient SIC is a challenge even at relatively narrow
bandwidths (i.e., ≤ 20MHz) [1, 2, 7–9, 12]. To enable wideband
FD, recent works [5, 11, 18, 23] have relied on the flexibility of
programmable Radio-Frequency Integrated Circuits (RFICs). For
example, in our prior work [18], we developed a switched-capacitor
delay-line-based programmable IC that has sixteen RF taps, each
with independently configurable gain and delay. The large RFIC
configuration space, with over 1019 possible parameter combina-
tions, offers flexibility at the cost of complexity. An optimal RFIC
configuration, computed using a PC (which could take over ten
seconds), achieved 23 dB of isolation from the antenna interface
and 30 dB of SIC from the RF taps over a 40MHz bandwidth, as
measured using a Vector Network Analyzer [18]. The RFIC presented
in [18] was evaluated using test equipment and it was not integrated
into a complete FD radio which would include digital SIC and a
Software-Defined Radio (SDR) to transmit and receive actual data.
Accordingly, two important challenges that are under-explored in
related works, including [18], are: (i) to design a real-time adaptive
controller that enables a highly-complex programmable RFIC to
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achieve and sustain sufficient SIC even when the SI is time-varying;
and (ii) to integrate the RFIC (along with its real-time controller)
into a complete FD radio that can transmit data over an actual link.

We previously presented two narrowband FD radios within the
scope of the Columbia FlexICoN project [24], achieving FD commu-
nication across 5MHzwith a single-tap amplitude- and phase-based
RF SI canceller [15] and 20 MHz with a two-tap frequency-domain
equalization-based RF SI canceller [6]. In this demonstration, we
present a wideband FD radio that adaptively controls the RFIC
from [18] in real time, achieving 70 dB SIC across a wide bandwidth
of 50MHz through a combination of circulator isolation, analog
RFIC cancellation, and digital SIC, reaching the noise floor of the
FD radio at −80 dBm. The complete RFIC optimization process is
performed in under 1.1 sec, and each fine-tuning adaptation step is
performed in under 0.3 sec.

2 DESIGN AND IMPLEMENTATION
Figures 1(a) and 1(b) show the block diagram and implementation
of the FD radio, consisting of a circulator-based antenna interface,
an RFIC canceller, an FPGA, and a USRP SDR platform controlled
from a PC running GNU Radio.
RFIC Canceller. SI at the FD receiver can be very strong, causing
nonlinearities at the Low Noise Amplifier (LNA) and clipping at
the Analog to Digital Converter (ADC). It is therefore crucial to
achieve sufficient SIC directly after the antenna interface. To enable
wideband SIC, the RFIC canceller [18] leverages its sixteen RF taps
with programmable gains and delays in order to recreate the large
SI channel delay spreads with fine resolution. The programmable
delays are implemented in a small form factor bymeans of switched-
capacitor delay-lines, ranging from 0.25 ps to 9 ns in steps of 0.25 ps.
The programmable gains are implemented using capacitor-stacking
and range from 0 to 1 in 6-bit quantization steps.
FPGA platform. The FD radio utilizes a Zynq UltraScale+ MP-
SoC ZCU104 Evaluation Board [25] to adaptively control the RFIC
in real-time. Using a brute force algorithm to search for the opti-
mal RFIC configuration within the > 1019 possible gain and delay
combinations is impractical. To quickly and adaptively control the
RFIC, we implement a closed-loop algorithm with two phases —
coarse-tuning and fine-tuning — both of which rely on the offline
characterization of the RF taps which are stored in the FPGA’s mem-
ory. During coarse-tuning, the FPGA employs Orthogonal Matching
Pursuit (OMP) [10] with Constrained Linear Least-Squares to se-
lect a subset of the RF taps and corresponding configuration that
maximizes SIC. In each subsequent fine-tuning step, the FPGA uses
Projected Gradient Descent to adjust the gains of the RFIC.
SDR platform. The FD radio employs a USRP-2974 for transmis-
sion and reception of OFDM-like data packets [4] encapsulated
with Zadoff-Chu pilot symbols for robust synchronization [13]. The
SDR and FPGA are both controlled from an Ubuntu 20.04 computer
running GNU Radio 3.8 and UHD 4.2 [20, 21]. The custom-made
GNU Radio flowgraph estimates the SI channel across the band-
width of interest [14, 19], and sends it to the FPGA via USB. The
FPGA uses the SI channel estimate to search for the optimal RFIC
configuration, and then sends the selected configuration to the RFIC
canceller via serial communication. Moreover, the flowgraph uses
the SI channel estimate to perform digital SIC [6].

Figure 2: Evolution of the RF and combined RF & digital can-
cellation over time. The circulator provides 26 dB of isolation.
Initial coarse-tuning (0.5 sec) improves SIC by 9 dB. Two fine-
tuning steps (2 × 0.3 sec) add 15 dB, and the total SIC (RF +
digital) converges to the noise floor.

3 DEMONSTRATIONS
Experiment 1: Wideband Adaptive FD Radio. This demonstra-
tion showcases the capability of the FD radio to quickly achieve
and sustain wideband SIC even when the SI is time-varying. In this
experiment, the SDR operates at a center frequency of 850MHz
and with a bandwidth of 50MHz, which lies within the operating
frequency of the circulator, and transmits at −10 dBm, which is
close to the maximum power admissible by the RFIC [18]. Partici-
pants can observe the transmitted and received signals in the time
and frequency domains, before and after SIC is applied. In addi-
tion, participants visualize the SIC evolution over time, as shown
in Figure 2, together with the evolution of the RFIC and digital SIC
parameters selected by the optimization algorithms. Furthermore,
participants are allowed to modify the environmental conditions
near the antenna, requiring the FD radio to adapt quickly. From
Figure 2 it can be seen that coarse-tuning takes less than 0.5 sec
and fine-tuning less than 0.3 sec. Notice that each of those periods
includes packet transmission and reception, SI channel estimation,
FPGA computation, and RFIC configuration.
Experiment 2: Throughput Gain of FD Link. In this demon-
stration, we use two FD radios to establish a wireless link in which
both SDRs transmit and receive OFDM-like packets. The center
frequency, bandwidth, and power of both SDRs are the same as
for Experiment 1. Participants will observe the correct reception of
data packets on both FD radios, and measure the improved through-
put of the FD link when compared to a Half-Duplex (HD) link. By
comparing HD and FD operations, participants will observe that
the bit error rate is not degraded due to wideband SIC.
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