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Video-based Social Distancing:
Evaluation in the COSMOS Testbed

Mahshid Ghasemi, Zhengye Yang, Mingfei Sun, Hongzhe Ye, Zihao Xiong, Javad Ghaderi, Zoran Kostic, and Gil
Zussman

Abstract—Social distancing is an effective public health tool to
reduce the spread of respiratory pandemics such as COVID-19.
To analyze compliance with social distancing policies, we design
two video-based pipelines for social distancing analysis, namely,
Auto-SDA and B-SDA. Auto-SDA (Automated video-based Social
Distancing Analyzer) is designed to measure social distancing
using street-level cameras. To avoid privacy concerns of using
street-level cameras, we further develop B-SDA (Bird’s eye view
Social Distancing Analyzer), which uses bird’s eye view cameras,
thereby preserving pedestrian’s privacy. We used the COSMOS
testbed deployed in West Harlem, New York City, to evaluate
both pipelines. In particular, Auto-SDA and B-SDA are applied
on videos recorded by two of COSMOS cameras deployed on the
2nd floor (street-level) and 12th floor (bird’s eye view) of Columbia
University’s Mudd building, looking at 120th St. and Amsterdam
Ave. intersection, New York City. Videos are recorded before and
during the peak of the pandemic, as well as after the vaccines
became broadly available. The results represent the impact of
social distancing policies on pedestrians’ social behavior. For
example, the analysis shows that after the lockdown, less than
55% of the pedestrians failed to adhere to the social distancing
policies, whereas this percentage increased to 65% after the
vaccines’ availability. Moreover, after the lockdown, 0-20% of
the pedestrians were affiliated with a social group, compared to
10-45% once the vaccines became available. The results also show
that the percentage of face-to-face failures has decreased from
42.3% (pre-pandemic) to 20.7%(after the lockdown).

Index Terms—Social distancing, COVID-19, object detection,
tracking, smart city, testbeds.

I. INTRODUCTION

Social distancing has been proven to be an effective tool in
reducing the spread of respiratory pandemics such as COVID-
19. Traditionally, compliance with preventive measures such as
social distancing policies has been evaluated through survey-
based methods [4], [5]. Such approaches necessitate the en-
gagement and cooperation of individuals, making the process
potentially inefficient and time-consuming. Alternatively, man-
ual observation of video footage has been utilized to assess
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individuals’ adherence to these policies [6]. However, these
methods may introduce bias and inaccuracies due to observers’
subjectivity and fatigue. With the growing prevalence of traffic
cameras and advances in artificial intelligence (AI) technolo-
gies, the opportunity for automation emerges, promising both
enhanced efficiency and accuracy. By leveraging these tech-
nologies, it is possible to automate compliance measurement,
reducing human bias and error and to offer a more timely
analysis.

Therefore, in this work, we present two pipelines for
social distancing analysis based on video cameras, namely,
Automated video-based Social Distancing Analyzer (Auto-
SDA) and Bird’s eye view Social Distancing Analyzer (B-
SDA), which are designed to measure pedestrians’ compliance
with social distancing policies using street-level and bird’s eye
view cameras, respectively. Auto-SDA offers high accuracy,
which is not sensitive to the dynamics of the scene and
the camera’s tilt angle. On the other hand, B-SDA provides
comparable accuracy while preserving pedestrians’ privacy.
Challenges. Our video-based social-distancing pipelines use
off-the-shelf models for pedestrian detection and tracking.
However, achieving highly accurate social-distancing analysis
requires overcoming several challenges, as outlined below:
• Distance measurement: To accurately measure the distance

between pedestrians, it is necessary to convert 2D pixel
distances into real-world 3D distances on the ground (this
process is called calibration). Calibration is more chal-
lenging for street-level cameras due to their oblique view
compared to bird’s eye cameras that have a top-level view.

• Pedestrian tracking: Due to the moving vehicles and static
obstacles on the road, such as traffic lights, the tracker model
might miss pedestrians or assign multiple IDs to a single
pedestrian. Rectifying the output of tracker models is par-
ticularly important for street-level cameras since their lower
viewpoint increases the likelihood of occlusion. Conversely,
for bird’s eye cameras, with their high view that minimizes
occlusion, rectifying tracker outputs is less crucial.

• Group detection: Identifying and distinguishing affiliated
pedestrians (i.e., pedestrians who walk together as a social
group) is very important. These groups need to be recog-
nized and excluded from social distancing failures.

• Camera perspective: Handling different camera perspec-
tives, such as bird’s eye view, brings its own set of chal-
lenges. For instance, from such perspectives, the smaller
appearance of pedestrians can make detection more diffi-
cult. These complexities can be mitigated during the pre-
processing phase.

Contributions. To cope with the above challenges and achieve
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Fig. 1: (a) The NSF PAWR COSMOS site at 120th St. and Amsterdam Ave. intersection, NYC; Social distancing evaluation using (b)
Auto-SDA and (c) B-SDA (Green: distance > 6 ft; Blue: social group; Red: distance < 6 ft).

the necessary accuracy, both systems require the addition of
specifically designed modules to the off-the-shelf pedestrian
detection and tracking models. Accordingly, the key contribu-
tions of our work are summarized below:
• We designed and incorporated three modules into Auto-

SDA: (i) a calibration module that converts 2D pixel dis-
tances into 3D on-ground distances with less than 10 cm
error, (ii) a correction module that identifies pedestrians who
were missed or assigned duplicate IDs by the tracker and
rectifies their trajectories, and (iii) a group detection module
that identifies affiliated pedestrians and excludes them from
social distancing failure analysis.

• In the B-SDA system, we incorporated pre-processing mod-
ules that enable social distancing analysis from a bird’s
eye view camera perspective. B-SDA also includes the
same group detection module as Auto-SDA. Similarly to
Auto-SDA, B-SDA is also equipped with a group detection
module.

• We fine-tuned and evaluated the two pipelines using real-
world data recorded by two cameras as part of the COS-
MOS testbed deployed in West Harlem, New York City
(NYC) [7]–[9]. The cameras are installed on the 2nd floor
(street-level) and 12th floor (bird’s eye view) of Columbia’s
Mudd building, looking at 120th St. and Amsterdam Ave.
intersection, NYC (see Fig. 1(a)). Fig. 1(b) demonstrates
social distancing analysis using Auto-SDA, and Fig. 1(c)
demonstrates B-SDA’s evaluation of social distancing fail-
ures.1

• To assess the impact of social distancing policies on pedes-
trians’ social behavior, we applied Auto-SDA and B-SDA
on videos recorded by these cameras, before the COVID-
19 outbreak, soon after the lockdown and after the vaccines
became broadly available.
i) Auto-SDA’s dataset consists of 180 sec videos recorded

at different times of the day (9 AM, 2 PM, 5:30 PM,
7:30 PM, and 10 PM) in about one month periods, soon
after the lockdown (June 17 to July 20, 2020), and after
the vaccines became broadly available (May 2021). In
addition, the dataset includes 16 videos collected (less
methodically) before the pandemic (June 2019), which
are used as a reference point.

ii) B-SDA’s dataset consists of 300 sec videos recorded mul-
tiple times per day (9 AM, 2 PM, 5:30 PM, and 10 PM)
from June 2020 to February 2021. It also includes spo-

1Sample videos of Auto-SDA and B-SDA evaluation appear in https://bit.
ly/3ZqznGb and https://bit.ly/3yGD0Mw, respectively.

radically collected videos between June and July 2019
(prior to the pandemic).

The results of applying Auto-SDA/B-SDA on recorded
videos show that after the lockdown, less than 55% of the
pedestrians failed to comply with the social distancing pro-
tocols compared to 65% post-vaccine. The results also show
that the fraction of pedestrians walking as a social group has
grown from 0-20% (after the lockdown) to 10-45% (post-
vaccine). We also compared the duration of social distancing
failures during the pandemic and post-vaccine periods, with
results indicating a statistical increase in the duration of social
distancing failures in the post-vaccine period. Furthermore,
the results suggest a significant decrease in pedestrian density
after the lockdown (compared to pre-pandemic), while the
density has slightly increased after the availability of vaccines.
Moreover, the percentage of face-to-face failures has decreased
from 42.3% (pre-pandemic) to 20.7%(after the lockdown).

The observed trend in social distancing compliance, from
before the pandemic via during the pandemic to the post-
vaccine availability period, is consistent with the findings
reported in various U.S. surveys [5], [10], [11] conducted
during the same time frame. To the best of our knowledge, this
is the first work to provide statistics regarding the evolution
of social distancing compliance using automated video-based
social distancing analyzers.
Organization. The rest of the paper is organized as follows.
In Sec. II, we present the research background and related
work on using computer vision to monitor social distancing.
Sections III and IV describe the implementation of Auto-SDA
and B-SDA pipelines. In Sec. V, we present the results of
applying Auto-SDA and B-SDA on our dataset. Conclusion
and future plans are discussed in Sec. VI and VII, respectively.

II. BACKGROUND AND RELATED WORK

Object detection is a computer-vision technique for locat-
ing instances of objects in images or videos. Most state-of-
the-art object detectors are deep learning-based. Among the
prominent approaches, R-CNN [12], Fast R-CNN [13], Faster
R-CNN [14], and Mask R-CNN [15] use a two-stage structure
for object detection, which consists of region proposal stage
and classification stage. In contrast, SSD [16] and YOLO
methods [17]–[20] have a single-stage structure, achieving
higher inference speeds. Improvements of YOLO [18]–[20]
lead to a detection accuracy comparable to R-CNN without
sacrificing YOLO’s inference speed in our scenario. Consider-
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ing the speed-accuracy trade-off, both Auto-SDA and B-SDA
use YOLOv4 [20] object detection model to detect pedestrians.

In addition to an object detector, a tracker is required to
extract the trajectory of each pedestrian and measure the
duration in which it has been in close proximity to an unaffil-
iated pedestrian. Auto-SDA uses the NVIDIA DCF tracker,
which leverages a Discriminative Correlation Filter (DCF)
based approach for visual object tracking and the Hungarian
algorithm for data association. Based on our experiments,
DCF provides higher accuracy than other trackers, such as
DeepSORT [21] (an extension to the Simple Online and Real-
time Tracking SORT algorithm) and DAN (Deep Affinity
Network) that jointly learns target object appearances and
their affinities in a pair of video frames in an end-to-end
fashion [22].

Table I summarizes the main features of Auto-SDA and B-
SDA compared to the prior work focusing on monitoring the
COVID-19 pandemic. Surveys on technologies for monitoring
social distancing and pandemic management appear in [23]–
[25]. The social distancing framework proposed in [26] uses
MobileNet Single Shot Multibox Detector (SSD) model for
human detection. It then compares the pixel distances between
individuals with a fixed value to distinguish social distancing
failures. However, if the camera is not perpendicular to the
ground, assuming a fixed threshold on pixel distances leads to
inaccurate failure detection.

The study [27] proposes the use of monocular cameras
and deep learning-based object detectors to monitor social
distancing and emit warnings. However, since it does not use
a tracker, it can only provide instantaneous warnings. In [28],
a deep learning detection technique based on YOLOv2 is
proposed. It uses thermal images to detect people and verify
their compliance with social distancing. The platforms [27],
[28] use homography transformation to convert 2D on-image
coordinates to their 3D counterparts, which can only be used
to estimate the camera pose for planar objects and are not
accurate enough for street-level views. Thus, a more advanced
method is required to calibrate the cameras and compute the
on-ground distances from the pixel distances on an image.
The framework in [29] uses YOLOv3 for object detection and
DeepSORT for tracking. The obtained bounding boxes are
utilized to obtain depth information of the pedestrians (i.e.,
their distance from the camera lens) and identify clusters of
pedestrians neglecting social distancing. However, the depth
information-based method is not sufficiently accurate for mea-
suring the distance between pedestrians, and a more precise
camera calibration along with group detection is needed.

The platform proposed in [30] performs human head de-
tection on UAV (unmanned aerial vehicles) images to locate
pedestrians. It then calculates the distance between detected
pedestrians to verify social distancing compliance. The frame-
works in [30]–[35] employ an object detector but do not use
a tracker to derive trajectories. Moreover, they perform planar
camera perspective transformation for calibration, which yields
an inaccurate estimation of the on-ground coordinates, thereby
limiting the social distancing measurements’ accuracy.

The platforms discussed above only use street-level cameras
and do not provide evaluations on real-world data recorded

Fig. 2: Different stages in the Auto-SDA pipeline.

during the COVID-19 pandemic. In this work, we study
the usage of bird’s-eye view cameras as well as street-level
cameras to measure social distancing compliance. Moreover,
we applied Auto-SDA and B-SDA on videos recorded during
the COVID-19 pandemic and measured the impacts of the
outbreak on pedestrians’ social behavior.

III. AUTO-SDA PIPELINE

Auto-SDA is designed to be a highly accurate social dis-
tancing analyzer pipeline whose performance is not sensitive
to the camera’s tilt-angle and scene dynamics. The pipeline
consists of multiple modules (see Fig. 2), including an object
detection module (YOLOv4 [36]) and a tracking module
(Nvidia DCF-based tracker). While these are off-the-shelf
components, achieving high accuracy calls for the design
of tailored components. Specifically, we incorporated three
modules in Auto-SDA, as outlined below.
• Camera calibration module: Our measurements show that

using a single set of photogrammetry parameters for the
whole scene leads to imprecise on-ground distance com-
putation. Therefore, this module breaks the view of the
camera into multiple areas and computes the correspond-
ing photogrammetry parameters for each area individually.
These parameters are then used to convert the 2D on-image
distances into 3D on-ground distances with less than 10 cm
error.

• ID correction module: This module compensates for the
inaccuracies of the object detector and tracking model
caused by the camera’s tilt angle and the obstacles on
the road. For instance, if multiple IDs are assigned to a
single pedestrian, this module removes the redundant IDs
and derives the entire trajectory of that pedestrian.

• Group detection module: This module detects the pedes-
trians affiliated with a single social group (e.g., members of
a family) and excludes them from social distancing failure.
In the following, we describe each module in detail.

A. Camera Calibration

Camera calibration is a necessary step for extracting on-
ground distances between pedestrians. The goal is to determine
the intrinsic and extrinsic parameters of the camera to convert
the 2D on-image coordinates viewed by the camera to the 3D
on-ground coordinates. Intrinsic parameters are (i) principal
point (cx, cy), (ii) focal length in pixel units (fx, fy), (iii)
radial distortion coefficients (k1, k2, ..., k6), and (iv) tangential
distortion coefficients (p1, p2). Extrinsic parameters are (i)
rotation matrix R, and (ii) translation vector t.2

Since the COSMOS cameras are fixed, we needed to
calibrate them only once. To do so, we captured multiple

2The effects of higher order coefficients are negligible, see [37].
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TABLE I: A comparison of prior work on social distancing analysis using street-level cameras to Auto-SDA

Framework Object Detection Tracking Calibration Method On-Ground Distance
Computation Error Correction Group Detection Real-World COVID-19

Pandemic Impact Analysis
[27] ✓ X Homography trans. ≫ 10 cm X X X
[29] ✓ ✓ Depth information ≫ 10 cm X X X

[30]–[35] ✓ X Planar camera persp.
trans. ≫ 10 cm X X X

[26] ✓ X Fixed scaling ≫ 10 cm X X X
Auto-SDA ✓ ✓ Multi-area calibration < 10 cm ✓ ✓ ✓

B-SDA ✓ ✓
Planar camera persp.

trans. < 10 cm
N/A due to
bird’s eye

view
✓ ✓

TABLE II: A comparison of calibration methods used in the prior work to Auto-SDA’s multi-area calibration

Pixel Coordinates of a Pair
of Points on a 4 K Frame

On-Ground
Distance

(cm)

Distance Calculated by
Multi-area Calibration

(cm)

Distance Calculated
by Homography
Trans. [27] (cm)

Distance Calculated
by Planar Camera

Persp.
Trans. [30]–[35] (cm)

[1093, 715], [1065, 685] 320 325 209 339
[1785, 572], [1862, 566] 183 178 140 128
[1680, 582], [1588, 552] 503 508 368 457
[2153, 598], [2077, 582] 259 256 201 146
[1121, 746], [1093, 714] 320 314 201 229

photos of a checkerboard with known square sizes, posed in
different tilt and rotation angles (see Fig. 3). To calculate the
intrinsic parameters, we fed the 2D on-image pixel coordinates
of the checkerboard corners and their corresponding 3D coor-
dinates into OpenCV [38], which runs the global Levenberg-
Marquardt optimization algorithm [39].

We split the view of the intersection into 10 areas (as shown
in Fig. 4) and we determined the extrinsic parameters for each
area. This can further mitigate the impact of camera distortion
and obtain the on-ground distances with less than 10 cm error
(ground truth is obtained from actual distance measurements
in the intersection). Accuracy improves with the number of
areas, but for our use case, 10 areas proved to be adequate.
For each area, we selected a few points on the ground with
known 3D coordinates and found their corresponding 2D pixel
coordinates in the camera’s view. These sample points, along
with the intrinsic parameters of the camera, are then used to
determine the extrinsic parameters (using OpenCV).

Auto-SDA plugs these parameters into the photogrammetry
equations [38], [40], [41], given below, and completes the 2D-
3D coordinates conversion:

[
x y z

]T
= R

[
X Y Z

]T
+ t, x′ =

x

z
, y′ =

y

z

x′′ = x′ 1 + k1r
2 + k2r

4 + k3r
6

1 + k4r2 + k5r4 + k6r6
+ 2p1x

′y′ + p2(r
2 + 2x′2)

y′′ = y′ 1 + k1r
2 + k2r

4 + k3r
6

1 + k4r2 + k5r4 + k6r6
+ p1(r

2 + 2y′2) + 2p2x
′y′

r2 = x′2 + y′2, u = fxx
′′ + cx, v = fyy

′′ + cy.

In the equations above, [u, v] are the 2D pixel coordinates,
and [X,Y, Z] are the 3D on-ground coordinates. Since there
are no closed-form equations to map the 2D points to 3D
points, Auto-SDA uses Newton’s method to solve the above
system of equations (it sets the ground level to Z = 0 and
solves for X and Y ).

In Table II, we compare the accuracy of on-ground distance
calculation of the multi-area calibration method used in Auto-
SDA with the calibration methods used in [27], [31]–[34]. As

Fig. 3: Calibration of the COSMOS cameras using a checkerboard:
more than 20 images of the checkerboard in different poses were
provided to the OpenCV library to obtain the intrinsic parameters of
the camera.

the results show, there could be more than 1 m error in cal-
culating the on-ground distances when using the homography
and planar camera perspective transformation method used in
the prior work. While such accuracy may be sufficient for
other applications, it is clearly inadequate for social distancing
monitoring. Moreover, in [29], the distance between pedestri-
ans is determined by using a method proposed in [42], which
results in poor accuracy. In this method, first, the distance
of a pedestrian from the camera lens is obtained using the
coordinates, width, and height of its bounding box provided
by an object detector. Then, the distance between every two
pedestrians is calculated. In Fig. 5, we represent the results
of calculating the pedestrians’ distances from the camera lens
using the calibration method proposed in [42]. The camera’s
(vertical and horizontal) distance from the pedestrians is more
than 10 m. However, due to the oblique view of the camera,
the calculated distances (displayed near the bounding boxes)
are far from their true values, and one cannot simply fix them
(e.g., using a scaling factor).

B. Pedestrian Detection and Tracking

Auto-SDA uses the YOLOv4 object detector [36] to detect
pedestrians. It is also equipped with a tracker (NvDCF) that
extracts the trajectory of each pedestrian and uses that to trace
the number of pedestrians with whom he/she is in contact
(within a radius of 6 ft) and the duration of each contact.
Both models are set as building blocks inside the Deepstream
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Fig. 4: Division of the camera scene into 10 areas. The extrinsic
parameters of the camera were calculated for each area individually.

Fig. 5: Computed distances of pedestrians from the camera using
objects’ depth information proposed in [42]. The real distances (both
vertically and horizontally) of the pedestrians from the camera are
each greater than 10 m. However, due to the oblique view of the
camera, the obtained distances deviate from their real values and it
is not straightforward to rectify them (e.g., using a scaling factor.)

pipeline which is an optimized architecture built using the
Gstreamer framework [43].

C. ID Correction

The COSMOS street-level camera is located at a corner of
the intersection and has an oblique view of the area. Therefore,
the pedestrians are small and might be blocked by obstacles
such as vehicles, traffic lights, and other pedestrians. As a
result, the tracker may lose a pedestrian along the way or
assign multiple IDs to a single person, leading to degraded
performance.

The ID Correction module is designed to mitigate this. It
detects the IDs that belong to a single pedestrian and extracts
their entire trajectory. Algorithm 1 describes our ID Correction
algorithm. It receives the results of the object detector and
tracking module as its input, and, for each ID, it creates a
structure in which it keeps the trajectory (id.T rj), the first
and last time it was detected by the tracker (id.T imeStamp),
and the parameters of the Linear Regression approximation of
the tail and head of the trajectory. The algorithm then uses
this information to predict the pedestrian’s location before it
was detected and after it was lost.

For each ID pair (id1, id2), the ID Correction algorithm
then verifies three conditions to determine whether they are
associated with a single pedestrian or not. First, the gap
between id1 lost time, t1, and id2 detected time, t2, must be
small enough (less than a predefined threshold e1). Second, the
distance between the predicted location of id1 at time t2 (based
on the Linear Regression approximation for the tail of id1
trajectory) and the location of id2 at time t2 has to be less than
a specified threshold (e2). Third, it measures the angle between
id1’s tail direction and id2’s head direction. This angle must
be less than 90◦ to ensure that the algorithm does not mistake
two pedestrians crossing each other in opposite directions for
a single pedestrian. If all three conditions hold, then id1 and

Algorithm 1 ID Correction
1: Input:IDvec, e1, e2, n ▷ IDvec is the output of NvDCF tracker
2: Output: corrected IDvec
3: for id ∈ IDvec do
4: Compute id.Trj ▷ vector of points on id’s path
5: Compute id.T imeStamp.StartT ime ▷ detection time
6: Compute id.T imeStamp.StopT ime ▷ lost time
7: Compute (id.TailEst, id.TailDir) ▷ Linear Regression of

id.Trj.tail(n)
8: Compute (id.HeadEst, id.HeadDir) ▷ Linear Regression of

id.Trj.head(n)
9: end for

10: for (id1, id2) ∈ IDvec do
11: t1← id1.T imeStamp.StopT ime
12: t2← id2.T imeStamp.StartT ime
13: p1 ← id1.TailEst.at(t = t2), p2 ← id1.Trj.at(t2)
14: v1 ← id1.TailDir, v2 ← id2.HeadDir
15: if t2 − t1 < e1 && |p1 − p2| < e2 && ∠(v1, v2) < 90 then
16: id1 and id2 belongs to same person
17: end if
18: end for

5

Fig. 6: Demonstration of detection and removal of redundant IDs
by the ID Correction algorithm when the tracker assigns 3 IDs to a
single pedestrian.

id2 belong to a single person. An example is shown in Fig. 6,
where the tracker has assigned three IDs to a single pedestrian.
The ID correction module detects the segments that belong to a
single trajectory by using the Linear Regression approximation
corresponding to the tail of each segment and comparing the
estimated start point and the real start point of the subsequent
segment.

D. Group Detection

We enhance the social distancing analysis by distinguishing
the pedestrians walking together as a social group (e.g.,
friends/family) and excluding them from social distancing
failures. There are several methods proposed for group de-
tection, e.g., see [44]–[47]. All these group detection methods
require details such as velocity, body and head orientation, and
exact trajectory. However, in our setting (and in many realistic
deployments), the cameras are mounted at a relatively high
altitude, viewing the intersection from a corner with a large tilt
angle. Moreover, various obstacles on the road might block the
view of pedestrians for some periods. Therefore, such detailed
information cannot be obtained from these cameras.

We designed a group detection algorithm that can detect
pedestrians belonging to a single social group with the limited
data we can derive from cameras such as the ones in the
COSMOS testbed. The Group Detection algorithm is given
in Algorithm 2. It uses the IDs of the pedestrians rectified
in the ID Correction module to derive an approximation of
each pedestrian trajectory. Then, it calculates the correlation
between these trajectories to check if two pedestrians belong
to a single social group. Specifically, the algorithm calculates
the distance between each pair of pedestrians (id1, id2) on
all the frames and then calculates the average distance (d̄) and
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Algorithm 2 Group Detection
1: Input: IDvec, dmax, dmax, σmax
2: Output: IDvec Pedestrians belong to a group
3: for id ∈ IDvec do
4: id.T imeTrj = map(id.T imeStepV ec, id.Trj)
5: end for
6: for (id1, id2) ∈ IDvec do
7: n = 0
8: for t = 1 : T do
9: pos1 = id1.T imeTrj(t), pos2 = id2.T imeTrj(t)

10: d = ||pos1 − pos2||2
11: if d > dmax then
12: n + +, continue
13: end if
14: Corrvec(id1, id2).append(d)
15: end for
16: if n > Nmax then
17: continue
18: end if
19: d̄ = mean(Corrvec(id1, id2)) ▷ calculate the mean distance between two

pedestrians
20: σ = std(Corrvec(id1, id2)) ▷ calculate the standard deviation of

instantaneous distances between two pedestrians
21: if d̄ < ∆max && σ < σmax then
22: id1 and id2 belongs to the same group
23: end if
24: end for

empirical standard deviation (σ). In line with previous research
on investigating various metrics for group identification by
studying the social nature of human behavior [48], [49], a
pair of pedestrians is labeled as one social group under two
main conditions:
• Their instantaneous distance (d) does not exceed the max-

imum distance (dmax) in more than the maximum allowed
frames (Nmax).

• The mean and standard deviation of their distance fall below
the maximum average distance (∆max) and the maximum
standard deviation (σmax), respectively.

The algorithm’s parameters (i.e., dmax, Nmax, ∆max, and σmax)
were fine-tuned using recorded sample videos from the COS-
MOS street-level camera. It was then evaluated on three
10-minute sample videos from the same camera, achieving
over 85% accuracy in group detection compared to visually
detected social groups.

IV. B-SDA PIPELINE

Although Auto-SDA can detect social distancing failures
with high accuracy, using street-level cameras has several
challenges. For example, the surveillance area of street-level
cameras is limited, tracking of pedestrians is challenging
due to occlusions, and face/license plate recognition can
raise privacy concerns. In B-SDA, we have addressed these
challenges by using bird’s eye view cameras. To facilitate
successful measurement of social distancing using bird’s-eye
camera recordings, two preliminary steps are required: (i) per-
frame detection of pedestrians within the scene [12]–[20], and
(ii) reliable tracking of pedestrian trajectories across video
frames [21], [50]–[52]. The size of pedestrians in bird’s-eye
view videos is a function of video resolution and can be
smaller than 30× 30 pixels for 1080p recordings. Processing
such small objects is a challenge for conventional object
detection and tracking algorithms. To mitigate these issues,
as illustrated in Fig. 7, B-SDA incorporates the following
modules.
• Data pre-processing module: Contains three components:

Weighted-Mask Background Subtraction, Video Calibration,

TABLE III: Quantitative Comparison on the B-SDA Dataset
WMBS CC AP mIoU Precision Recall

44.9 71.7 74.2 49.9
✓ 55.1 69.8 70.9 62.9

✓ 58.0 68.75 84.1 62.8
✓ ✓ 63.0 68.77 73.3 73.0

and Center Cropping. This module aims to improve the
detection of moving objects and enlarge per-pixel size of
extracted features.

• Object detection module: Consists of a modified version
of YOLOv4 detector [36], [53], customized to better detect
small pedestrians recorded by a bird’s eye view camera.

• Multiple object tracking module: Unlike street-level view,
in bird’s eye view, object occlusion barely occurs. Therefore,
we can use a simpler tracker, SORT [54], which achieves
sufficient accuracy and fast inference speed.

• Group detection module: Determines social groups and
social distancing failures based on trajectory stability and
pedestrians velocity similarities.

A. Data Pre-Processing

The use of highly elevated cameras results in small and
potentially blurry pedestrians. Videos with various lighting and
weather conditions additionally impact the accuracy of object
detection and tracking. To tackle these, we apply data pre-
processing methods: Weighted-Mask Background Subtraction
(WMBS) and Video Calibration (VC). WMBS constructs the
background image from videos acquired by static cameras,
computed as the mean of all N frames [55]. The background
image with a weighted parameter α is subtracted from the
original frames, to calculate the enhanced image. Formally,

Fb(I
(t)
r ) = I(t)r − α

N

N∑
k=1

I(k)r , (1)

where I
(t)
b = Fb(I

(t)
r ) represents the output image, I(t)r is t-th

frame in the original video, and α is the weight coefficient.
VC transforms bird’s-eye view videos into calibrated bird’s-

eye videos perpendicular to the ground. It maps a trapezoidally
distorted traffic intersection scene into a rectangular one with
a uniform scale. Calibration is achieved by calculating the
homography matrix Mca that maps I

(t)
b in image coordinates

to Fc(I
(t)
b ) in real world coordinates. Center cropping is the

final stage in calibration, which removes unnecessary parts of
the original image to increase the per-pixel size of features.
The cropped image I(t) is the input for procedures that follow.

Table III shows how data pre-processing methods affect
our customized YOLOv4 model. We select Weighted-Mask
Background Subtraction (WMBS) and Center Cropping (CC).
With these two methods, YOLOv4 achieves the highest AP
and recall compared to other combinations (for crowd/traffic
surveillance applications, recall is more important than pre-
cision). The MOT accuracy is evaluated by the CLEAR
metrics [56], where MOTA is the key evaluation score. The
tracking performance is evaluated on the B-SDA test dataset.
The detection is generated by YOLOv4 with WMBS and
Center Cropping. For the YOLOv4-SORT pipeline, we obtain
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Fig. 7: Pipeline for the B-SDA system: (i) collect raw videos from a bird’s-eye view camera; (ii) apply calibration and background subtraction
to alleviate the effect of sub-optimal sensor quality; (iii) perform pedestrian detection; (iv) execute pedestrian tracking; (v) analyze the behavior
of pedestrian movement using social distancing analysis algorithm.

TABLE IV: Annotation Statistics
Dataset Number of Frames Number of Objects

B-SDA train 7.4k 49.7k
B-SDA test 8.1k 203.2k

MOTA = 47.65%, MOTP = 71.4%, MT = 60.9%, and ML =
5.8%.

B. Object Detection and Tracking

To reach the detection accuracy appropriate for the proposed
social distancing analysis system, we altered the feature map
topology in YOLOv4 to adopt a shallower feature map and
to detect small pedestrians. The anchor sizes were determined
based on the clustering results of the B-SDA dataset. In the
training process of YOLOv4, the customized YOLOv4 started
with the backbone pre-trained on the Imagenet dataset [57].
Next, it was trained with (a) VisDrone2019 dataset [58] in
832 × 832 resolution for 6,000 epochs, followed by (b) B-
SDA dataset that consists of annotated videos recorded from
the COSMOS camera (the annotation statistics are shown in
Table IV) for another 6,000 epochs. We used a batch size of 64
and the learning rate of 10−3 with a weight decay of 5×10−4.
For real-time tracking, we use the SORT algorithm [59] which
balances accuracy and processing speed.

C. Group Detection and Social Distancing Failure Detection

Similar to Auto-SDA, the social distancing analysis system
in B-SDA continually receives the tracking information for
each frame. The system keeps updating the tracking state
and extracts useful information to obtain the pedestrians’
trajectories.

Unlike Auto-SDA, the estimation of real-world distances
between objects is simplified by the bird’s-eye video calibra-
tion. The distance of six feet in our videos is represented by
approximately 35 pixels based on the ground measurement.

Next, we create a Euclidean distance matrix for all detected
pedestrians to find potential social distancing failure pairs. To

TABLE V: Group Validation Performance
Trajectory
Compare

Velocity
Compare Precision Recall F1

0.92 0.57 0.66
✓ 0.90 0.99 0.92
✓ ✓ 0.86 0.96 0.88

avoid overcounting the number of failures, we use the group
detection module described in Sec. III-D.

To evaluate the precision of the group detection module,
we annotated groups of pedestrians with bounding boxes that
cover all pedestrians within the same group, for 10, 000 video
frames. In each group bounding box, pedestrians who are
within the social distancing threshold are the true positives
in the group validation evaluation. We use precision, recall,
and F1 score for the evaluation.

Table V shows that the algorithm can capture accurate
grouping information and filter out failure pairs belonging
to the same group. We observe that trajectory Comparison
significantly improves the Recall and F1 score, while velocity
comparison has a negative impact on performance. As a result,
we have decided to remove the velocity estimation function
and rely solely on the trajectory comparison function for
further analysis of social distancing.

V. MEASUREMENTS AND EVALUATION

We applied Auto-SDA and B-SDA to videos recorded from
the COSMOS cameras, which are deployed on the 2nd and 12th

floor of Columbia’s Mudd building looking at the COSMOS
site (see Fig. 1).3 Auto-SDA’s dataset consists of 180 sec
(two times the signal timing cycle of the traffic lights at
the intersection) videos, recorded five times a day at 9 AM,
2 PM, 5:30 PM, 7:30 PM, and 10 PM, between June 17 and

3The use of the videos by Columbia researchers is IRB-exempt. The videos
are solely used for research-related purposes. A data set of anonymized videos
recorded by COSMOS cameras deployed on Columbia’s Mudd building is
available for researchers in [60]. The details of anonymization process are
presented in [61].
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July 2020 (after the lockdown), during May 2021 (after the
vaccines became broadly available). It also includes 16 videos
that were opportunistically recorded before the COVID-19
outbreak (in July 2019). B-SDA’s dataset consists of 300 sec
videos recorded at 9 AM, 2 PM, 5:30 PM, and 10 PM, from
June 2020 to February 2021. It also includes sporadically
collected videos between June and July 2019 (prior to the
pandemic). We used the results to evaluate the impacts of the
pandemic on pedestrians’ social behavior.

Figures 8 to 13 present the results obtained by applying
Auto-SDA on the recorded videos from the 2nd floor camera.
Fig. 8 shows the fraction of recorded videos in which a certain
percentage of pedestrians are walking as a group. One can
see that the fraction of pedestrians walking as a social group
has grown from 0-20% (during the lockdown) to 10-45%
(post-vaccine). For each video, we calculated the percentage
of pedestrians who neglect social distancing and plotted a
normalized histogram of the results in Fig. 9. It can be seen
that after the lockdown, less than 55% of the pedestrians
neglected social distancing rules, compared to 65% post-
vaccine. Fig. 10 compares the duration of social distancing
failure incidents during the pandemic and post-vaccine. The
results demonstrate a statistical increase of around 3 s in
the duration of social distancing failures in the post-vaccine
period. Fig. 11 displays the increase in the maximum duration
of post-vaccine social distancing failure incidents. Fig. 12
illustrates the normalized histogram of the number of social
distancing failures at different times of the day. We compare
the pre-pandemic, lockdown, and post-vaccine density of the
pedestrians at the intersection in Fig. 13. One can observe
that density of the pedestrians has decreased by almost 50%
after the lockdown (compared to pre-pandemic), while it has
slightly increased after the availability of the vaccines.

Fig. 8: Auto-SDA: Normalized histogram of the percentage of pedes-
trians affiliated with a social group.

Fig. 9: Auto-SDA: Normalized histogram of the percentage of pedes-
trians who failed to comply with social distancing guidelines.

Fig. 10: Auto-SDA: Normalized histogram of the duration of the
detected social distancing failure incidents.

Fig. 11: Auto-SDA: Normalized histogram of the maximum duration
of social distancing failure observed.

Fig. 12: Auto-SDA: Normalized histogram of the number of pedes-
trians neglecting social distancing protocols at different times of the
day.
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Fig. 13: Auto-SDA: Comparison between the density of pedestrians
walking at the COSMOS site in different periods.

The results obtained by applying B-SDA on the videos
recorded by the 12th floor camera are summarized in Fig-
ures 14 and 15. Specifically, Fig. 14 shows the probability
distribution of the angle between the moving directions of two
pedestrians in a failure pair before and during the pandemic,
interpolated using Gaussian kernel density estimation. We
declare that a face-to-face failure occurs when the difference
in velocity direction is larger than 150 degrees. Before the
pandemic, 42.3% of failures are face-to-face. During the
pandemic, the distribution indicates that pedestrians are aware
of higher chances of getting infected when neglecting social
distancing. They are thus more cautious when walking towards
each other, which decreases the percentage of face-to-face
failures from 42.3% to 20.7%. We use a histogram to visualize
the statistics of average per-minute failures at different times
of day in Fig. 15. Considering that people are more likely to
come into contact with each other when crowd density is high,
it makes sense that the average number of failures is higher
during the daytime.

Finally, we note that several surveys have been conducted
across the U.S. e.g., [5], [10], [11], to measure individu-
als’ compliance with social distancing guidelines during the
peak of the COVID-19 pandemic in 2020 and following
the widespread availability of vaccines in 2021. The results
of these surveys indicate very similar trends in terms of
adherence to social distancing policies and engagement in
social interactions from the early stage of the outbreak to after
the availability of the vaccines.

Fig. 14: B-SDA: Distribution of the angle between moving directions
of two pedestrians in a failure pair.

Fig. 15: B-SDA: Number of pedestrians who failed to comply with
social distancing at different times of the day.

VI. CONCLUSION

We developed two approaches to measure compliance with
social distancing: Auto-SDA and B-SDA. Auto-SDA uses
street-level cameras and has high accuracy in calculating
distances between pedestrians. B-SDA uses bird’s eye view
cameras to maintain privacy while still offering comparable
accuracy. We applied Auto-SDA and B-SDA on videos from
COSMOS cameras recorded before the pandemic, during the
peak of the pandemic, and after the availability of the vaccines.
The results represent the impacts of the social distancing
rules on pedestrians’ social behavior. The obtained results are
consistent with the findings of conducted surveys in the U.S.,
showing fewer failures during the pandemic than before. After
the vaccine was available, there was a slight increase in failures
compared to the beginning of the outbreak.

VII. FUTURE WORK

Future research includes extending the proposed systems to
integrate data from multiple cameras and other sensors such
as LiDARs. Real-time operation of the systems is also an
important aspect that must be considered, as this capability
could facilitate immediate intervention and policy adjustments
as necessary. These improvements will fully automate the
evaluation of compliance with preventive measures such as
social distancing policies and increase preparedness for future
pandemics. The ultimate goal of these enhancements is to
significantly boost the accuracy and speed of public health
measures’ effectiveness evaluations, thereby contributing to
improved public safety and health outcomes.
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