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Abstract. False data injection (FDI) attacks pose a significant threat to
the reliability of power system state estimation (PSSE). Recently, graph
signal processing (GSP)-based detectors have been shown to enable
the detection of well-designed cyber attacks named unobservable FDI
attacks. However, current detectors, including GSP-based detectors, do
not consider the impact of secured sensors on the detection process; thus,
they may have limited power, especially in the low signal-to-noise ratio
(SNR) regime. In this paper, we propose a novel FDI attack detection
method that incorporates both knowledge of the locations of secured
sensors and the GSP properties of power system states (voltages). We
develop the secured-sensors-and-graph-Laplacian-based generalized like-
lihood ratio test (SSGL-GLRT) that integrates the secured data and
the graph smoothness properties of the state variables. Furthermore, we
introduce a generalization of the method that allows the use of differ-
ent high-pass GSP filters together with prior knowledge of the locations
of the secured sensors. Then, we develop the SSGL-GLRT for a dis-
tributed PSSE based on the alternating direction method of multipliers
(ADMM). Numerical simulations demonstrate that the proposed method
significantly improves the probability of detecting FDI attacks compared
to existing GSP-based detectors, achieving an increase of up to 30% in
the detection probability for the same false alarm rate by integrating
secured sensor location information.

Keywords: Graph signal processing (GSP) · false data injection
(FDI) attack detection · secured sensors · power system state
estimation (PSSE) · cyber-physical systems · distributed detection

1 Introduction

Smart grids integrate traditional power system components with advanced infor-
mation and communication technology (ICT), providing critical cyber-physical
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infrastructure [43]. However, this also makes them vulnerable to cyber attacks
[40–42], particularly false data injection (FDI) attacks, where an attacker cor-
rupts measurements and injects fake information into the system. FDI attacks
may inflict severe damage that ranges from economic consequences to the
destruction of grid devices [14,23,24,47,48] by influencing the critical power
system state estimation (PSSE) process, which provides grid monitoring signals
for power system operations [26,27]. PSSE is typically equipped with residual-
based bad data detection (BDD) capabilities and, therefore can identify faulty
data and random faults [27]. However, a well-designed, unobservable FDI attack
can bypass the conventional residual-based BDD [21,25]. Therefore, developing
advanced tools to detect unobservable FDI attacks is crucial to maintaining high
power supply quality and stable system operation.

Fig. 1. Graph representation of IEEE 14-bus system. The node color represents the
value of the states (voltage phases). In (a), the grid is not under attack, whereas in (b),
node 14 is attacked (red circle), and nodes {3, 8, 10, 13} are protected (green circles).
It can be seen that the unattacked grid state is much smoother than the attacked grid
state, i.e., the states of connected buses tend to be similar. (Color figure online)

In the past decade, various methods have been proposed for the detection of
unobservable FDI attacks. Some methods utilize a set of protected measurements
or synchronized phasor measurement units [2,6,19,20]. Specifically, these works
aim to find the best locations for the protected sensors. Machine learning-based
methods have been proposed, but they require a large, stationary, and reliable
database of data, which is often not available [10,12,18,44]. Sparse methods
were proposed in [28,34]. However, these methods impose assumptions on the
stationary and structural characteristics of the system loads, such as the lack of
correlation with the system topology and the sparse nature of the attack in the
time domain, which may not be true in real-world situations. Additionally, previ-
ous studies, such as [17,31,46], investigated the use of BDD and cyber attacks to
compromise the distributed PSSE. Furthermore, graph signal processing (GSP)
methods have been demonstrated to be useful for the detection of failures, topol-
ogy changes, and FDI attacks [4,5,9,11,29,33,37,38]. Despite this, incorporating
information on secured sensor locations into FDI detection designs has not yet
been explored either in centralized or in distributed frameworks. Additionally,
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the use of GSP properties for FDI detection remains at a preliminary stage and
has not been fully investigated.

In this study, we present a novel approach for the detection of unobservable
FDI attacks in power systems in the presence of secured sensors that are assumed
to be immune to adversarial cyber attacks. These sensors with secured measure-
ments can be obtained by additional validation processes by methods such as
encryption, continuous monitoring, and separation from the Internet [20]. Our
approach leverages the fact that the system states are known to be smooth
graph signals [8,9,33], as illustrated in Fig. 1. Moreover, our approach is distin-
guished from existing GSP-based detectors by its ability to incorporate prior
knowledge on the locations of the secured sensors. We formulate the hypothe-
sis testing for this setting and derive the secured-sensors-and-graph-Laplacian-
based generalized likelihood ratio test (SSGL-GLRT) that incorporates both
the information on the locations of the secured-sensors and the graph smooth-
ness properties of the system states. Furthermore, we introduce a generalization
of the SSGL-GLRT by replacing the graph smoothness measure with any high-
pass graph filter. The considered model can also accommodate distributed power
system operation. In this approach, the network is divided into interconnected
areas that are controlled separately, but share partial information. To this end,
we derive the distributed SSGL-GLRT, that utilizes the alternating detection
method of multipliers (ADMM) optimization algorithm in [3]. The numerical
results indicate that the proposed SSGL-GLRT with secured sensors achieves a
higher probability of detection and a lower false alarm rate, compared to exist-
ing methods, in the presence of secured sensors. This is due to the fact that the
SSGL-GLRT exploits the graph smoothness property of the states as well as the
knowledge of unattacked measurements.

In the following, vectors and matrices are denoted by boldface lowercase and
uppercase letters, respectively. The mth element of the vector a and the (m, q)th

element of the matrix A are denoted by am and Am,q, respectively. Similarly, aΛ

is a subvector of a with the elements indexed by Λ. The matrix I and the vector
0 denote the identity matrix and the zero vector, respectively, with appropriate
dimensions, and || · || denotes the Euclidean l2-norm of vectors.

2 Model

The power system is represented by an undirected weighted graph, G(V, ξ), where
V is the set of N nodes (bus and/or generators), and ξ is the set of edges
(transmission lines) between the nodes. In this graph representation of the power
system, it can be shown that the nodal admittance matrix is a graph Laplacian
matrix. The (k, l)th element of B is given by [27]

Bk,l =

⎧
⎪⎨

⎪⎩

−
∑

n∈Nk

bk,n, k = l

bk,l, (k, l) ∈ ξ

0, otherwise

, ∀k, l = 1, . . . , N, (1)
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where Nk is the set of buses connected to bus k and bk,n < 0 is the susceptance
of line (k, n) ∈ ξ.

The power system is governed by the nonlinear power flow equations, which
are often approximated by the linearized DC model [27]. We consider the
attacked and noisy DC model:

z = Hθ + a + e, (2)

where the active power measurements, z ∈ R
M , are corrupted by an additive

FDI attack, a ∈ R
M , and by measurement noise, e ∈ R

M , which is assumed to be
a zero-mean Gaussian vector with covariance matrix R. The matrix H ∈ R

M×N

is a known full-rank matrix, which is determined by the network topology and
by the admittance matrix [27]. It should be noted that the matrix B from (1)
is a submatrix of H from (2) that is associated with the power injection meters.
Finally, the system states, i.e., the voltage phases, are denoted by θ ∈ R

N .
In the GSP literature, signals measured over the nodes of the graph are

assumed to be smooth w.r.t. the Laplacian matrix [7,15,22,35,39,45,49]. In the
context of power systems, it was shown in [4,9,32] that the system states are
smooth graph signals, i.e.

TVG(θ)
�
= θTBθ ≤ ε1, (3)

where ε1 > 0 is small relative to all other parameters in the system. By substi-
tuting (1) in (3), we obtain

TVG(θ) =
1
2

N∑

k=1

∑

n∈Nk

Bk,n

(
θk − θn

)2
. (4)

Roughly speaking, the smoothness property in (3), also referred to as graph
total variation (TV), implies that the signal values (states in power systems)
associated with the end nodes of edges with high weights in the graph (buses
with large susceptance values) tend to be similar. In particular, the voltage angles
of connected buses are similar.

The FDI attack, a ∈ R
M , is considered to be an unobservable FDI attack

[25], i.e. it satisfies
a = Hc, (5)

where c ∈ R
N is an arbitrary vector. As a result, the attack a is in the range of H.

It is known that the attack described in (5) surpasses classical BDD methods [21].

3 GSP-Based FDI Detection with Secured Sensors

In this section, we design the SSGL-GLRT for detecting unobservable FDI
attacks in the presence of secured measurements. In particular, it is assumed
that a subset of the measurements is more reliable as these measurements are
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equipped with additional protection measures, e.g. encryption, continuous mon-
itoring, and separation from the Internet [20]. This set of protected sensors may
encompass generator nodes, which are typically highly secured, and/or specific
locations that were chosen based on a defense policy against FDI attacks. The
SSGL-GLRT is based on the generalized likelihood ratio test (GLRT). Specifi-
cally, we consider the following hypothesis test associated with the model from
Sect. 2: {H0 : a = 0

H1 : a �= 0.

To this end, we derive the secured-sensors-and-graph-Laplacian-based maximum
likelihood estimator (SSGL-ML) of the states in Subsect. 3.1. Subsequently, we
use the SSGL-ML to derive the SSGL-GLRT in Subsect. 3.2, and discuss its
properties in Subsect. 3.3.

3.1 SSGL-MLE

As stated at the beginning of this section, a subset of measurements, Λ ⊂
{1, . . . , M}, is assumed highly secured. From the point of view of an adver-
sary, this assumption implies that the measurements in the subset Λ cannot be
attacked:

aΛ = 0. (6)

From the defender’s perspective, we assume that constraint (6) is relaxed and
replaced by the following assumption:

||aΛ||2 = ||Ma||2 ≤ ε2, (7)

where ε2 is small relative to the other parameters in the system and M is a
diagonal mask matrix with the diagonal elements

Mi,i =

{
1 i ∈ Λ

0 i /∈ Λ.

Assumption (7) implies that the attack, a, has relatively small absolute values
over the sensors in the set Λ ⊂ M. This assumption permits flexibility in the case
where some sensors in the set Λ are affected by random bad data (not originated
by an attack), and makes the system more robust to small misspecifications or
perturbations of Λ.

The SSGL-ML is a PSSE method with prior knowledge about the locations
of the secured measurements and the graph smoothness properties of the system
states [4,9,33]. The SSGL-ML is solved by maximizing the following regularized
log-likelihood function over the system state variables θ and the FDI attack a:

QSSGL(θ,a) = − (z − Hθ − a)TR−1(z − Hθ − a)

− μ1θ
TBθ − μ2||Ma||2, (8)
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where μ1 > 0 and μ2 > 0 are regularization parameters. These parameters
enable the system operator to adjust the importance of each of the regulariza-
tion functions. Note that the log-likelihood function in (8) is a concave function
(see Appendix), and thus, the solution to the SSGL-ML is obtained by solving
the normal equations. This function is equivalent to the standard PSSE log-
likelihood function with two additional regularization terms:

R.1 Graph-Laplacian regularization (μ1θ
TBθ): A graph smoothness regulariza-

tion term that incorporates the smoothness of the states in (3). This allows
us to make a distinction between the system states, which are considered
smooth, and the non-smooth FDI attack.

R.2 Secured-sensors regularization (μ2||Ma||2): An energy regularization func-
tion that incorporates the information on the locations of the secured sen-
sors by using (7). This allows further distinction between the signal Hθ,
which is a non-sparse signal with energy across all sensor positions, and
the low-energy attack.

We now derive the SSGL-ML for the state vector, θ, and the attack vector,
a, based on the regularized log-likelihood function in (8). Later, these estimators
will be used for deriving the GLRT in Subsect. 3.2. We first consider the null
hypothesis, H0, i.e. there is no attack (a = 0). By substituting a = 0 in (8), we
obtain that under hypothesis H0, the SSGL-ML of θ is

θ̂SSGL-ML
|H0

= arg min
θ∈RN

−QSSGL(θ,a = 0)

= arg min
θ∈RN

(z − Hθ)TR−1(z − Hθ) + μ1θ
TBθ

= Kθz, (9)

where the gain matrix is given by

Kθ �
= (HTR−1H + μ1B)−1HTR−1. (10)

The SSGL-ML estimator in (9)–(10) coincides with the GSP weighted least
squares (GSP-WLS) estimator from [4].

Under hypothesis H1, when it is known that a �= 0, the SSGL-ML for both
θ and a is given by

(θ̂SSGL-ML
|H1

, âSSGL-ML
|H1

) = arg min
θ∈RN ,a∈RM

−QSSGL(θ,a). (11)

Since −QSSGL(θ,a) from (8) is convex (see Appendix), the estimators of θ and
a can be computed by the following normal equations:

a = Ka(z − Hθ) (12)

θ = Kθ (z − a), (13)

where Kθ is defined in (10) and

Ka =(R−1 + μ2M)−1R−1. (14)
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Substituting (12) into (13) results in

θ̂SSGL-ML
|H1

= Aθz, (15)

where
Aθ �

=
(
I − KθKaH

)−1
Kθ (I − Ka). (16)

Substituting (15) in (12) results in

âSSGL-ML
|H1

= Ka(I − HAθ )z. (17)

The MLEs of θ and a given in (9), (15), and (17), are used in the next subsection
to derive the SSGL-GLRT.

3.2 SSGL-GLRT

The SSGL-GLRT is the difference between the regularized log-likelihood function
from (8) under H1 and under H0 [16]:

T SSGL-GLRT(z) = QSSGL(θ̂SSGL-ML
|H1

, âSSGL-ML
|H1

) − QSSGL(θ̂SSGL-ML
|H0

,0). (18)

By using (15) and (17), we obtain

QSSGL(θ̂SSGL-ML
|H1

, âSSGL-ML
|H1

) = − (z − HAθz − Ka(I − HAθ )z)TR−1

× (z − HAθz − Ka(I − HAθ )z)

− μ1(Aθz)TBAθz − μ2||MKa(I − HAθ )z||2.
(19)

Similarly, using (9), we obtain

QSSGL(θ̂SSGL-ML
|H0

,0) = − (z − HKθz)TR−1(z − HKθz)

− μ1(Kθz)TBKθz.
(20)

Substituting (19) and (20) in (18), results in

T SSGL-GLRT(z) = zTGz, (21)

where

G
�
= (I − HKθ )TR−1(I − HKθ ) − (I − HAθ )T (I − Ka)TR−1

× (I − Ka)(I − HAθ ) + μ1

(
(Kθ )TBKθ − (Aθ )TBAθ

)

− μ2(I − HAθ )T (Ka)TMKa(I − HAθ ).

(22)

The SSGL-GLRT in (21) is a weighted energy detector, where the weight
matrix G in (22) is composed of five components: The first and second compo-
nents evaluate the estimation accuracy of the SSGL-ML under hypotheses H0

and H1, respectively, w.r.t. the input measurements. The third and fourth com-
ponents evaluate the smoothness of the estimated state vector under hypotheses
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H0 and H1, respectively. Finally, the fifth component evaluates the compliance
of the estimated attack with the assumption in (7).

The computational complexity of the detector proposed in (21)–(22) can be
separated into two parts: the online and offline operations. Online, it is required
to compute (21) given the M × M matrix G and the M × 1 vector z. In this
case, the number of multiplications is in order of O(M2) when G is dense and
unstructured. Offline, it is required to calculate the matrix G defined in (22). In
this case, the most demanding procedure is the inverse of R, which is an M ×M
matrix. Thus, the computational complexity is in order of O(M3) when R is
dense and unstructured.

3.3 Special Cases

In the following, we present a few special cases of the SSGL-GLRT.

C.1 No regularization (μ1 = μ2 = 0): By substituting μ1 = 0 and μ2 = 0 in
(10) and (14), we obtain

Kθ = K
�
= (HTRH)−1HTR−1

and Ka = I, respectively. Substituting these results and μ1 = μ2 = 0 in
(22), results in

G = (I − HK)TR−1(I − HK). (23)

By substituting (23) in (21), one obtains the J(θ)-test [27]:

TBDD(z) = zT (I − HK)TR−1(I − HK)z. (24)

It is known that the BDD detector in (24) cannot detect unobservable FDI
attacks as defined in (5) (see e.g. [21,25]).

C.2 Only Laplacian-based regularization (μ1 > 0, μ2 = 0): When μ2 = 0,
similarly to in C.1, we obtain that Ka = I. By substituting this result and
μ2 = 0 into (16), we get Aθ = 0. Thus, in this case, (22) is reduced to

G = (I − HKθ )TR−1(I − HKθ ) + μ1(Kθ )TBKθ . (25)

Finally, substitution of (25) in (21) results in

TGL-GLRT(z) =zT (I − HKθ )TR−1(I − HKθ )T z

+ μ1zT (Kθ )TBKθz,
(26)

which is the graph-Laplacian-regularized GLRT (GL-GLRT) from [5]: that
only considers the prior on the smoothness of the states.

C.3 Only secured-sensors-based regularization (μ1 = 0, μ2 > 0): By sub-
stituting μ1 = 0 in (10) and (16) we obtain Kθ = K and

Aθ
2

�
=

(
I − KKaH

)−1
K(I − Ka).
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By substituting these results in (22), we obtain the weighting matrix for
this case:

G = − (I − HAθ
2)T (I − Ka)TR−1(I − Ka)(I − HAθ

2 )

− μ2(I − HAθ
2 )T (Ka)TMKa(I − HAθ

2)

+ (I − HK)TR−1(I − HK).

The resulting detector only takes into account the prior information of the
secured measurements. However, this detector is not practical because if Λ
does not include all measurements, i.e. some measurements are not secured,
then (I − KKaH) is not invertible. Moreover, by substituting (13) in (12)
and then substituting Kθ = K we see that (17) can also be written as

âSS-ML
|H1

= (I − KaHK)−1Ka(I − HK)z.

This indicates that for unobservable attacks, a = Hc, we obtain that âSS-ML
|H1

is the same for input z and its corrupted version z + Hc, because

(I − HK)Hc = Hc − Hc = 0.

Hence, this detector is not effective against unobservable FDI attacks
(Table 1).

Table 1. Classification of the different GLRTs based on the regularization functions
used.

Detector Regularization term

Secured sensors Graph Laplacian

SSGL-GLRT v v

GL-GLRT x v

PP-GLRT v x

BDD x x

3.4 General Graph High Pass Filter (GHPF)

The SSGL-GLRT exploits the smoothness property of the states in (3). Other
approaches in [9,32] are built upon the idea that the states can be thought
of as graph signals with low energy in the high-frequency range of the graph
spectrum, as defined in the GSP literature [39]. Similarly, we can generalize the
proposed SSGL-GLRT as follows. Since the states can be considered low-pass
graph signals [32], the smoothness term, θTBθ, can be replaced by any term of
the form

θTUBf(ΦB)UT
Bθ, (27)
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where UB and ΦB are the eigenvector and eigenvalue matrices of B, i.e.
B = UBΦBUT

B . The graph filter f(·) is assumed to be a nonnegative
analytic function, defined by its graph frequency response [30], f(Φ) =
diag(f(φ1), . . . , f(φN )). Roughly speaking, f(Φ) is a GHPF if the frequency
response f(φn) increases as the eigenvalue φn increases. Thus, using the GHPF
in (27) results in a penalty on signal content in the high graph frequencies that
can be used to detect outliers/anomalies w.r.t. the graph [36], or, in our case,
FDI attacks. The practical implementation results in the same SSGL-GLRT,
where B is replaced by

(
UBf(ΦB)UT

B

)
everywhere.

For example, using the graph frequency response

f(φn) =
√

φn, n = 1, . . . , N

in (27), results in the smoothness criterion θTBθ used in the CP-GLRT. An
alternative GHPF is the following ideal-GHPF:

fGHPF(φn) =

{
0 φn ≤ φcut

1 φn > φcut

, n = 1, . . . , N, (28)

where φcut is the cutoff frequency. This GHPF is used for FDI detection in [9,33],
but without using protected measurements.

4 Distributed Detection

In the previous section, we derived the SSGL-GLRT for the centralized approach
in which a single control center operates the system. However, a centralized app-
roach may incur impractical computational and communication load, increased
vulnerability, and disclosure of the internal system structure. Therefore, in this
section, we discuss the modification of the SSGL-GLRT, and a special case,
the GL-GLRT, for distributed frameworks. Our derivation is based on the dis-
tributed PSSE approach described in [17], in which the PSSE is performed with
measurements corrupted by bad data. This section is organized as follows. In
Subsect. 4.1, we review the distributed PSSE from [17]. Then, in Subsect. 4.2,
we derive the proposed distributed SSGL-GLRT and GL-GLRT detectors.

4.1 Distributed PSSE

We consider an interconnected power system comprising L control areas. The
measurement model for the lth area, based on the DC power flow model given
in (2), can be expressed as

zl = Hlθl + al + el, l = 1, . . . , L, (29)

where θl ∈ R
Nl×1 represents the subset of interconnected power system states

(i.e. a subvector of θ) associated with the measurements in zl, Hl ∈ R
Ml×Nl is



250 G. Morgenstern et al.

the appropriate submatrix topology matrix (a submatrix of H), al ∈ R
Ml×1 is

the attack on the sensors in the lth area (a submatrix of H), and el ∈ R
Ml×1

represents the system noise in this area, modeled as a zero-mean Gaussian noise
with covariance matrix Rq ∈ R

Ml×Ml (a submatrix of R). The distributed PSSE
can be written as the following optimization problem [17]:

{θ̂l}L
l=1 = arg min

θl
l=1,...,L

L∑

l=1

Ql

s.t. θl[l′] = θl′ [l], ∀l′ ∈ Al, ∀l,

(30)

where the cost function of the different areas, Ql, is jointly minimized subject to
the constraint that the state vectors of each area partially overlap. Specifically,
we assume that the state vector of area l includes all buses in that area and their
first-order neighbors, and the set Al includes all areas that share state variables
with area l. The notation θl[l′] represents the subvector of θl that includes all
state variables shared with area l′.

The solution to (30) by the ADMM algorithm [3] consists of the following
iterative steps [17]:

θ
(t+1)
l = arg min

θ
Ql(θl) +

ζ

2

Nl∑

i=1

1{Ai
l �=∅}|Ai

l|(θl(i) − p(t)
l (i))2, (31a)

s(t+1)
l (i) =

1
|Ai

l|
∑

l′∈Ai
l

θ
(t+1)
l′ [i], ∀i with Ai

l �= ∅, (31b)

p(t+1)
l (i) = p(t)

l (i) + s(t+1)
l (i) − θ

(t)
l (i) − s(t)l (i)

2
, ∀i with Ai

l �= ∅. (31c)

Here, the auxiliary vectors sl and pl are used, and 1(·) denotes the indicator
function, which equals 1 if its condition is met and 0 otherwise. The set Ai

l rep-
resents the areas that share variable θl(i) with area l. Additionally, the param-
eter ζ represents the user-defined step size. We use here the least squares cost
function, QLS(θ) = (z−Hθ)TR−1(z−Hθ), which can be modified for each area
l to QLS

l (θ) = (zl − Hlθl)TR−1
l (zl − Hlθl). In this case, as shown in [17], the

problem is solved using (31) while replacing (31a) with:

θ
(t+1)
l = (HlR−1

l Hl + ζDl)−1(R−1
l HT

l zl + ζDlp
(t)
l ), (32)

where Dl is the diagonal matrix with the (i, i) entry |Ai
l|. As for initialization,

the state variables θl are set to arbitrary values θ
(0)
l , variables s(0)l are initialized

as in (31b), and p(0)
l (i) is initialized as (x(0)

l (i)−s(0)l (i))/2. The ADMM iterative
step converges when the objective function and constraints functions are convex,
closed, and proper, and the augmented Lagrangian has a saddle point [3].

4.2 Distributed SSGL-GLRT and GL-GLRT

The cost function for the SSGL-ML in (8) is obtained by solving the standard
PSSE, which is defined as an unconstrained LS problem along with two regular-
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Algorithm 1: Distributed SS-GLRT in area l

Input: Fix detection threshold γl and step size ζ Set initial guess: θ
(0)

|H0,l
, s

(0)
l ,

and p
(0)
l

1 for t = 0, 1, . . . do
2 Update:

3 θ
(t+1)

|H0,l
= (HlR

−1
l Hl + μ1,lBl + ζDl)

−1(R−1
l HT

l zl + ζDlp
(t)
l )

4 s
(t+1)
l (i) = 1

|Ai
l
|
∑

l′∈Ai
l
θ
(t+1)

|H0,l′ [i], ∀i with Ai
l �= ∅

5 p
(t+1)
l (i) = p

(t)
l (i) + s

(t+1)
l (i) − θ

(t)
|H0,l

(i)−s
(t)
l

(i)

2
, ∀i with Ai

l �= ∅
6 Set θ̂SSGL-ML

|H0,l
= θ

(t+1)

|H0,l

7 Set initial guess: θ
(0)

|H1,l
, s

(0)
l , p

(0)
l , and a

(0)

|H1,l

8 for t = 0, 1, . . . do
9 Update:

10 θ
(t+1)

|H1,l
= (HlR

−1
l Hl + μ1,lBl + ζDl)

−1(R−1
l HT

l (zl − a
(t)
l ) + ζDlp

(t)
l )

11 s
(t+1)
l (i) = 1

|Ai
l
|
∑

l′∈Ai
l
θ
(t+1)

|H0,l′ [i], ∀i with Ai
l �= ∅

12 p
(t+1)
l (i) = p

(t)
l (i) + s

(t+1)
l (i) − θ

(t)
|H0,l

(i)−s
(t)
l

(i)

2
, ∀i with Ai

l �= ∅
13 a

(t+1)

|H1,l
= (R−1

l + μ2,lMl)
−1R−1

l (zl − Hlθ
(t+1)
l )

14 Set θ̂SSGL-ML
|H1,l

= θ
(t+1)

|H1,l
and âSSGL-ML

|H1,l
= a

(t+1)

|H1,l

15 if QSSGL
l (θ̂SSGL-ML

|H1,l
, âSSGL-ML

|H1,l
) − QSSGL

l (θ̂SSGL-ML
|H0,l

,0) > γl then

16 return “The area is under an FDI attack”

17 else
18 return “The area is under normal operation”

ization terms. One term, μ1θ
TBθ, imposes prior knowledge on the smoothness

property of the state variables, as defined in (3). The other term, μ2‖Ma‖2,
imposes prior knowledge on the secured sensors, as defined in (7). We modify
the regularization terms to recast the optimization problem as the minimiza-
tion of a regional cost function. Specifically, we introduce the local smoothness
measure defined in [39], which is given by the inner summation of the global
smoothness measure in (4):

Si(θ) =
∑

j∈Ni

Bi,j(θi − θj)2, (33)

where Ni is the first-order neighborhood of bus i. We measure the smoothness
over each region by summing the local smoothness of all buses in that region,
resulting in

∑Nl

i=1 Si(θ). It can be verified that this sum satisfies
∑

i∈R

Si(θ) = θT
l Blθl,
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where Bl is the submatrix of B associated with the state variables in the lth
region. Moreover, since the prior knowledge on the location of the secured sensors
is local to each sensor, we modify the prior assumption in (34) for each area l to

‖Mlal‖2 ≤ εl, (34)

where Ml is the Ml×Ml submatrix of the diagonal matrix M associated with the
power measurements in the lth area. Using (29) and (33)–(34), we can modify
the log-likelihood function in (8) to measure the cost function of the lth area as

QSSGL
l (θl,al) = −(zl − Hlθl − al)

TR−1
l (zl − Hqθl − al) − µ1,lθ

T
l Blθl − µ2,l‖Mlal‖2.

(35)
As presented in Sect. 3.2, the SSGL-GLRT is a detector derived from (18).

For the distributed case, the SSGL-GLRT can be adapted by defining L detec-
tors, denoted as T SSGL-GLRT

l , where each detection test is performed in the
corresponding control center. These detectors are defined as follows:

T SSGL-GLRT
l = QSSGL

l (θ̂SSGL-ML
|H1,l , âSSGL-ML

|H1,l ) − QSSGL
l (θ̂SSGL-ML

|H0,l ,0), l = 1, . . . , L,
(36)

where θ̂SSGL-ML
|H1,l and âSSGL-ML

|H1,l are the ML estimates for the state variables and

the attack in the lth area under the H1 hypothesis, and θ̂SSGL-ML
|H0,l are the ML

estimates for the state variable in the lth area under the H0 hypothesis.
For hypothesis H0, we seek to estimate θ̂SSGL-ML

|H0,l , which is obtained by replac-
ing Ql(θl) in (31) with (35) when al is replaced with 0. Therefore, we can esti-
mate θ̂SSGL-ML

|H0,l by applying the results from (9)–(10) to (31), which results in
replacing (31a) with

θ
(t+1)
|H0,l = (HlR−1

l Hl + μ1,lBl + ζDl)−1(R−1
l HT

l zl + ζDlp
(t)
l ). (37)

Note that the inclusion of the term ζDl is motivated by the same reasons as
in (32). For hypothesis H1, we want to estimate (θ̂SSGL-ML

|H1,l , âSSGL-ML
|H1,l ), which

is obtained by replacing Ql(θl) in (31) with (35), a function of both θl and al.
In this case, we can estimate (θ̂SSGL-ML

|H1,l , âSSGL-ML
|H1,l ) by applying the results from

(9)–(14) to (31), which results in replacing (31a) with

θ
(t+1)
|H1,l = (HlR−1

l Hl + μ1,lBl + ζDl)−1(R−1
l HT

l (zl − a(t)l ) + ζDlp
(t)
l ) (38)

and adding
a(t+1)

|H1,l = (R−1
l + μ2,lMl)−1R−1

l (zl − Hlθ
(t+1)
l ). (39)

Note that steps (31b)–(31c) are not modified, ensuring that the agreement
between shared states is unrelated to the local functions Ql. Moreover, the inclu-
sion of the term ζDl is motivated by the same reasons as in (32) and (37). The
distributed SS-GLRT is summarized in Algorithm 1.

Moreover, from (20) and (26) we observe that the GL-GLRT, which
is a special case of the SSGL-GLRT, can be expressed as TGL-GLRT =
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Algorithm 2: Distributed GL-GLRT in area l

Input: Fix detection threshold γl and step size ζ Set initial guess: θ
(0)

|H0,l
, s

(0)
l ,

and p
(0)
l

1 for t = 0, 1, . . . do
2 Update:

3 θ
(t+1)

|H0,l
= (HlR

−1
l Hl + μ1,lBl + ζDl)

−1(R−1
l HT

l zl + ζDlp
(t)
l )

4 s
(t+1)
l (i) = 1

|Ai
l
|
∑

l′∈Ai
l
θ
(t+1)

|H0,l′ [i], ∀i with Ai
l �= ∅

5 p
(t+1)
l (i) = p

(t)
l (i) + s

(t+1)
l (i) − θ

(t)
|H0,l

(i)−s
(t)
l

(i)

2
, ∀i with Ai

l �= ∅
6 Set θ̂SSGL-ML

|H0,l
= θ

(t+1)

|H0,l
if −QSSGL

l (θ̂SSGL-ML
|H0,l

,0) > γl then

7 return “The area is under an FDI attack”

8 else
9 return “The area is under normal operation”

QSSGL(θ̂SSGL-ML
|H0

,0). Similar to the SSGL-GLRT, the SSGL-GLRT can be
adjusted for the distributed scenario by applying L detectors, represented as
TGL-GLRT

l , where each test is performed in the appropriate control center. These
detectors are defined as

TGL-GLRT
l = QSSGL

l (θ̂SSGL-ML
|H0,l ,0), l = 1, . . . , L,

where θ̂SSGL-ML
|H0,l estimation is described in (37). The distributed GL-GLRT is

summarized in Algorithm 2.

5 Simulations: IEEE 57-Bus Test Case

The performance of the SSGL-GLRT from (21) is evaluated and compared with
the following detectors:

1. The J(θ) test in (24) [1], which is the conventional BDD method.
2. GSP-based methods: the GL-GLRT in (26). and the Ideal-GLRT introduced

in [9,33].
3. The SSGL-GLRT obtained by using B = f

1
2 (ΦB) in (21), where f(ΦB) =

1 + 99 × fGHPF(ΦB), which is the perturbed ideal GHPF defined in (28).

These methods were selected to demonstrate the advantage of incorporating both
the physical and the GSP information. For the SSGL-GLRT, SS-Ideal-GLRT,
GL-GLRT, and Ideal-GLRT, we chose the regularization parameter μ1 = 900;
in addition, for the SSGL-GLRT and SS-Ideal-GLRT we also set μ2 = 10. We
conducted 1, 000 Monte-Carlo simulations based on the IEEE 57-bus test case
network using the DC-PF model in (2) to evaluate performance. For each trial,
we randomly drew the load demand from a Gaussian distribution with the mean
set to the load values provided in the test case. We computed the system states
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Fig. 2. The probability of detection is measured versus: (a) the probability of false
alarm (ROC), and (b) the strength of the attack ‖a‖

using the Matpower command runpf(·) [50]. We set the noise covariance matrix
to R = σ2I with σ2 = 0.01. We generated an unobservable FDI attack using (5)
with c33 �= 0, and then normalized it to satisfy ||a|| = 1. In addition, we defined
the set of secured sensors S by constraining 80 power measurements (36% of
the total measurements) such that it was ensured that the state variables in the
generator buses and their first-order neighbors are not affected by the attack.
This set includes the power injection measurements in these buses and the power
flow measurement in the lines entering these buses.

The performance of the different detectors is exhibited in Fig. 2. In Fig. 2(a),
the receiver operating characteristic (ROC) curves demonstrate the balance
between the probability of detection and the probability of false alarms. The
results show that the proposed SSGL-GLRT outperforms all other detectors in
terms of the probability of detection for any level of false alarm probability.
In particular, the inclusion of prior information about protected measurements
gives the SSGL-GLRT an advantage over the GL-GLRT. Similarly, the SS-Ideal-
GLRT, which benefits from incorporating the additional information on the loca-
tions of the secured sensors, outperforms the Ideal-GLRT. The results also show
that detectors based on the smoothness of the states, i.e., the SSGL-GLRT and
GL-GLRT, perform better than those based on the graph-bandlimited assump-
tion, i.e., the SS-Ideal-GLRT and Ideal-GHPF. This is because the smoothness
assumption provides a better description of the states’ behavior than the graph-
bandlimited assumption. Finally, it can be seen that the that the conventional
BDD method - the J(θ) test - has the same power as random chance (“coin
flipping”). Thus, it cannot detect the unobservable FDI attack, as expected.

In Fig. 2(b) the detection probability is shown versus the attack strength,
which is measured by ‖a‖. As expected, it can be seen that the detection proba-
bility of all the detectors except the BDD detector increases with an increase in
‖a‖. In a similar manner to Fig. 2(a), it can be observed that incorporating the
additional information on the locations of the secured sensors improves the prob-
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ability of detection, where the SSGL-GLRT and SS-Ideal-GLRT outperforms the
GL-GLRT and the Ideal-GLRT, respectively. Moreover, it can be observed that
the SSGL-GLRT shows the best performance. Finally, as expected, the BDD
detector fails to detect the unobservable FDI attack for any selection of ‖a‖
presented.

6 Conclusions

We introduce SSGL-GLRT, which is a new detection method against FDI attacks
based on the well-known GLRT. The SSGL-GLRT is derived while incorporat-
ing knowledge of secured sensors’ locations and graph smoothness properties
of power system state variables. We provide a generalization of the method
that allows the use of different high-pass GSP filters instead of using the graph
smoothness measure. Moreover, we also consider the case where the power sys-
tem is operated in a distributed manner and provide the distributed SSGL-
GLRT detector. Numerical simulation show that incorporating the knowledge
of the locations of the secured sensors alongside the graph smoothness proper-
ties in the design of the detector significantly improves the detection capabilities
against FDI attacks. Future work may focus on expanding the proposed detector
to the alternating current (AC) power flow model, which is often used in power
systems.
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Appendix: Concavity of Q(θ, a)

In order to show that the function Q(θ,a) from (8) is a concave function w.r.t
θ and a, we need to show that the Hessian matrix of the second-order partial
derivatives of −Q(θ,a) is a positive semidefinite matrix. It can be seen that the
Hessian matrix of −Q(θ,a) w.r.t. the vector [θT ,aT ]T is

(
HTR−1H + B HTR−1

R−1H R−1 + M

)

=
(
HTR−1H HTR−1

R−1H R−1

)

+
(
B 0
0 M

)

.

The Hessian is a sum of two matrices. In the following, we show that each one
of these matrices is positive semidefinite, which implies that the Hessian is a

positive semidefinite matrix. First, it can be seen that the matrix
(
B 0
0 M

)

is a
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positive semidefinite matrix because it is a block diagonal matrix of two positive
semidefinite matrices (see the definitions of B and M in (1) and (8), respectively).

Second, the matrix
(
HTR−1H HTR−1

R−1H R−1

)

is a positive semidefinite matrix since

it can be verified that its Schur complement,

HTR−1H − HTR−1RR−1H = 0,

is a positive semidefinite matrix [13].
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