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Power System State Estimation

Power Measurements | Power System | Estimated Voltages
Located in the substations State Estimation Located in the substations

and transmission lines Performed in the
control center

Transmitting measurements via cyber communication Is
prone to cyber attacks




False Data Injection Attacks

Tampering with Power , Errors in System , Erroneous System , Adversary
Measurements State Estimation Operations Gain

System Blackout

Economical Gain
A cyber attack in Saudi Arabia failed to

cause Carnage but the next attempt ECHNOLOGY NEWS  JANUARY 18, 2017 / 1:06 PM / UPDATED 7 YEARS AGO
b
could be deadly

o
At a time when the world faces a dangerous escalation in cyber warfare, a series of assaults on petrochemical U k ra I n e 0 S Owe r O u ta e Wa S a C b e r a tt a c k IS
companies in Saudi Arabia - possibly backed by nation states — has caused alarm y ™
Nicole Perlroth, Clifford Krauss ¢ Tuesday 20 March 2018 14:14 E\Comments @ 0 O @ U k

3y Pavel Polityuk, Oleg Vukmanovic, Stephen Jewkes 3 MIN READ f |

KIEV/MILAN (Reuters) - A power blackout in Ukraine’s capital Kiev last month w:
caused by a cyber attack and investigators are trying to trace other potentially
infected computers and establish the source of the breach, utility Ukrenergo told

Reuters on Wednesday.



Defense Against False Data Injections

Option 1: Attack prevention  Option 2: Attack detection

Requires additional resources Relies on intrinsic system and
attack properties
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Power System Represented as an Undirected Graph

Substations (generators/loads)
Transmission lines

Susceptance over the lines

TRANSFORMER EQUIVALENT

(6) cenenatons

@ SYNCHRONOUS
CONDENSERS




Power System Represented as an Undirected Graph

Substations (generators/loads) — vertices
Transmission lines — edges

Susceptance over the lines— edge weights
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Power System Represented as an Undirected Graph

Substations (generators/loads) — vertices
Transmission lines — edges (generators/loads) <= (Sources/Sinks)

Susceptance over the lines— edge weights

TRANSFORMER EQUIVALENT

(6) cenenatons

@ SYNCHRONOUS
CONDENSERS




Direct Current Power Flow Model

Vertex measurement: (active power injection) (12, (13)
= ) w,(0,-6) ’
ueN m @

Edge measurement: (active power flow)

Z(u,v) — Wv,u(ev o Hu)

V.. neighbor vertices of vertex v
w, - weight over edge (u, v)

0 state value over vertex v (voltage phase)



Direct Current Power Flow Model

Vertex measurement: (active power injection) (12, (13)
v T Z Wv,u(ev -0, , O
ueN O m @
(9,

Edge measurement: (active power flow)

wi o (8
Luy) = Wv,u(ev — Hu) y . 4 O (8)

V.. neighbor vertices of vertex v |
Linear Model

w, - weight over edge (u, v) - = HO + noise

0 state value over vertex v (voltage phase)

H - represents the system topology



False Data Injection Attack Models

7z = HO+a+noise



False Data Injection Attack Models

7z = HO+a+noise




False Data Injection Attack Models

7z = HO+a+noise
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Traditional Bad Data Detection

7z = HO+a+noise

Z Power System 0 Bad Data TS Z, é )
State Estimation '

* The noise Is assumed I.1.d with a standard normal distribution



Traditional Bad Data Detection

7z = HO+a+noise

4 Power System 0 Bad Data 1(Z, é )
State Estimation g
Attack is declared If

1(z, é) exceeds the
detection threshold

* The noise Is assumed I.1.d with a standard normal distribution



Traditional Bad Data Detection

7z = HO+a+noise

4 Power System 0 Bad Data 1(Z, é )
State Estimation g
Attack is declared If

1(z, é) exceeds the
detection threshold

1(z,0) = ||z — HO||

0 = min T(z,0) = (H' H)"'H'z
0

* The noise Is assumed I.1.d with a standard normal distribution



Traditional Bad Data Detection

Fail to detect unobservable false data injection attacks (@ = Hc)
T(z,0) = ||z — H||
= ||z — HHTH)'H"z||3

Liu, Y., Ning, P., & Reiter, M. K. (2011). False data injection attacks against state estimation in
electric power grids. ACM Transactions on Information and System Security (TISSEC), 14(1), 1-33.



Traditional Bad Data Detection

Fail to detect unobservable false data injection attacks (@ = Hc)
T(z,0) = ||z — H||
= ||z — HHTH)'H"7]|3

z = HO+Hc+noise +@ (I — HH"H)"'"Hnoise

HHTH)'HT HO+Hc+HH"H)"'H" - noise

Liu, Y., Ning, P., & Reiter, M. K. (2011). False data injection attacks against state estimation in
electric power grids. ACM Transactions on Information and System Security (TISSEC), 14(1), 1-33.
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Secured Sensors
acsv — O
Secured sensors are assumed to

be Immuned from an attack

Additional resources are used to
protect these sensors: guards,
electric fences, ....

& =1{1,11,13,(1,5),(6,12)}



Secured Sensors
acsv — O
Secured sensors are assumed to

be Immuned from an attack

Additional resources are used to
protect these sensors: guards,
electric fences, ....

Design Flexibility

2
acy — O_> HaCyHZ S 61
& ={1,11,13,(1,5),(6,12)}



Power System States are Smooth Graph Signals

The difference between the 2
signal state values in neighbor / T~ .
vertices is assumed small /

10 ~_ 9 —8
/5\\ 4// 7 — , -4
Y -

\ 3

State Signal

Each vertex is assigned with a
value represented by its color

Dabush, Lital, Ariel Kroizer, and Tirza Routtenberg. "State
estimation in partially observable power systems via graph
signal processing tools." Sensors 23.3 (2023): 1387.



Power System States are Smooth Graph Signals

The difference between the 2
signal state values in neighbor / ~_ )
vertices Is assumed small / /

l 10\ 9 —8

Hence, the signal variation 5 / N\
over the graph is smooth / \\ T, ||
X a i

\ 3
State Signal

Each vertex is assigned with a
value represented by its color

Dabush, Lital, Ariel Kroizer, and Tirza Routtenberg. "State
estimation in partially observable power systems via graph
signal processing tools." Sensors 23.3 (2023): 1387.



Power System States are Smooth Graph Signals

The difference between the 2
signal state values in neighbor / ~_ )
vertices Is assumed small ° /
l 6 — | T~ 10 8
Hence, the signal variation / \ |
over the graph is smooth / \ )
/ 2
l N
It has a bounded graph
Total Variation State Signal
Z Z (QM — Hv)z < e, Each vertex is assigned with a
VE% "= /;/ 4 % value represented by its color
sys?eurrr? \?evr?iizes \Eggﬁt Sig;nal variation Dabush, Lital, Ariel Kroizer, and Tirza Routtenberg. "State

estimation in partially observable power systems via graph

Sum over vertex  between vertex vand oo brocessing tools.” Sensors 23.3 (2023): 1387,

Vv neighbors vertex u



Secured Sensors and Graph Based Detection

AttaCkHypOtheSIS ................................................................................................ . Z _ HH—|—a—|—nOZS€

£ Attack and State 0 a Detection Tl(z,H a)
Estimation Sriterion

e Tl(Z, é, a) — Tz(z, é)

No Attack Hypothesis

L ¢ Detection éTz(Zaé)
State Estimation —»




Secured Sensors and Graph Based Detection

AttaCkHypOtheSIS ................................................................................................ . Z _ H0—|—a—|—n0158

Estimation criterion

No Attack Hypothesis Attack is declared If
T.(z,0,a) —T-(z,0
State Est|mat|on _> DeteCtIOn TZ(Z, 0) exi:(eeds ﬂ?le de%éctio)n
criterion threshold




Secured Sensors and Graph Based Detection

- T1&.0,0) = |lz = HO—al 3w llag| 3~ ), D, w,u(0,—6,)"

A ‘ VEZ ueN
0 = min T,(z,0,a)
0.a

- No Attack Hypothesis

 T,z.0) = |z —HO|3-1, ) ) @,,0,-0,)
. VEY uEN,

* The noise Is assumed I.1.d with a standard normal distribution
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Modification to Distributed Optimization

z = HO+a+noise, =1,2,...

o
-
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Modification to Distributed Optimization

z = HO+a+noise, =1,2,...

e The measurements In each area are contained in the area
e.g. vertex measurement in the orange area are: 1,2,3,4,5




Modification to Distributed Optimization

z = HO+a+noise, =1,2,...

e The measurements In each area are contained in the area

e.g. vertex measurement in the orange area are: 1,2,3,4,5 G,Q

e The state variables in each area are the ones contained in the O m .
(5

area and their first order neighbors. O
av L
There is an overlap between U—@E

e.g. state variables in the orange area are: 1,2,3,4,5,6,7,9
(8
state variables in neighbor areas °




Modification to Distributed Optimization

z = HO+a+noise, =1,2,...

o State estimation and attack detection is performed in each
area separately




Modification to Distributed Optimization

z = HO+a+noise, =1,2,...

State estimation and attack detection is performed in each

area separately @,G O
Estimation (states and attack) is performed in each area m

iteratively O @ O
In each iteration, the control centers in neighbor areas
share information on their state variables O (7)

0‘9 ]




Secured Sensors and Graph Based Detection

Attack Hypothesis

< Attack and State Detection Tl(z 0.d)
Estimation criterion

e T)z.0.d) - Tyz.0)

No Attack Hypothesis

Detection I)(z0)
State Estimation criterion




Secured Sensors and Graph Based Detection

Attack Hypothesis

< Attack and State Detection Tl(z 0.d)
Estimation criterion

e T,.0.4) - Tyz.0)

No Attack Hypothesis : ===T Attack is declared If
| A T,(z.0,.a)— Tyz,0)
State Estimation Dejcecjclon Iy 9) ei(ceeds the de’?ection
criterion threshold




Attack and State Estimation

- Auxiliary
State Estimation Parameters
Computation
Attack Estimation

* Explained for the Attack hypothesis



Attack and State Estimation

Auxiliary

Parameters
Computation

State Estimation

p=D
Attack Estimation

* Explained for the Attack hypothesis



Attack and State Estimation
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* Explained for the Attack hypothesis



Attack and State Estimation

Auxiliary
Parameters
Computation

* Explained for the Attack hypothesis
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Power System States are Low Pass Graph Signals

The difference between the
signal state values in neighbor
vertices IS assumed small

State Signal

Each vertex is assigned with a
value represented by its color

Drayer, Elisabeth, and Tirza F

outtenberg. "Detection of false data injection attacks in smart

grids based on graph signal processing." IEEE Systems Journal 14.2 (2019): 1886-1890.



Power System States are Low Pass Graph Signals

The difference between the e
signal state values in neighbor // :
vertices is assumed small e—/”\m\
} AN
. . VAN et
Hence, the signal variation D / |
over the graph Is smooth N o
State Signal

Each vertex is assigned with a
value represented by its color

Drayer, Elisabeth, and Tirza Routtenberg. "Detection of false data injection attacks in smart
grids based on graph signal processing." IEEE Systems Journal 14.2 (2019): 1886-1890.



Power System States are Low Pass Graph Signals

The difference between the e
signal state values in neighbor // :
vertices is assumed small e/“\m\
} AN
. . VAN et
Hence, the signal variation D / |
over the graph Is smooth N o
State Signal
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Power System States are Low Pass Graph Signals

Fourler transform Froquency
Tlme Domain

Inverse Fourier
transform

Graph Fourier

transform E
Inverse Graph omain

Fourler transform



Power System States are Low Pass Graph Signals

Fourler transform Froquency
Tlme bomain

Low Frequency | High Frequency

Inverse Fourier i Time AN
_________ transform . Signals VUV VUV
Graph Fourier P Graoh _.,' B
transform . § ardp NS o8
Vertex Domain |e——* |Graph Frequency . Signals AN
Inverse Graph Jomain oV
Fourler transform P XX,
........................................................................................................................ d;.’-’



Power System States are Low Pass Graph Signals

Low graph total variation —_—

2 Z Wv,u(eu o Hv)z < €

VEZ ues

Low graph High graph :
Frequencies Frequencies



Power System States are Low Pass Graph Signals

Low graph total variation —_—

2 Z Wv,u(eu o Hv)z < €

VEY ueN

Example 0

state signal |
(low pass) attack signal

TTL et e QGT e I . . Low graph High graph
o?? 111 ;.-9900909900090 TootlY Itl} e Y o®lle OTO E E . .
Graph freque:\cy domain | Graph frequency ?domain Freq uencles Freq uencles

(absolute Value) (abSOIUte Value) -----------------------------------------------------------------------------------------------------
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Performance Evaluation

. » |EEE-57 power system test case

_+ Attack on a single node (33)

-+ 36% of the measurements are secured

.« Ensuring the state variables in the
generator substations cannot be
manipulated



probability of detection

Receiver Operating Characteristics (ROC)

—-O— Bad Data Detection
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Receiver Operating Characteristics (ROC)

—-O— Bad Data Detection

| ldeal Graph High Pass Filter Based
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Receiver Operating Characteristics (ROC)
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Receiver Operating Characteristics (ROC)
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Receiver Operating Characteristics (ROC)
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Probability of Detection Verse Attack Norm

—-O— Bad Data Detection
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Probability of Detection Verse Attack Norm
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Probability of Detection Verse Attack Norm
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Probability of Detection Verse Attack Norm

—— Bad Data Detection

208 Ideal Graph High Pass Filter Based
= Detection
)
206 —sk— Ideal Graph High Pass Filter and
o Secured Sensors Based Detection
5 04 Graph signal smoothness based
S detection

0.2

b o 6 —O0—O—O0——0

OT | | | | | |

0 0.5 1 1.5 2 2.5 3
attack norm




Probability of Detection Verse Attack Norm
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» Introduced two regularization factors for power system & SN TrerTey s

state estimation under false data injection attacks
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1. Graph-based regularization on the system states
W ENERGY

2. Secured sensors-based regularization on the attack
Gal Morgenstern

* Provided a detection method against false data galmo@post.bgu.ac.il

* Provided a modification of the detection method to

distributed optimization
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